2017 秋季班初三数学精炼题集参考答案

第一讲:比例线段(一)

一、基础练习:

1、
$$\frac{a}{2} = \frac{b}{3} = \frac{c}{4}$$
 , $y = \frac{a+2b+3c}{a} = \frac{1}{a}$

解: 原式=10

2、若
$$\frac{a}{b} = \sqrt{5}$$
,则 $\frac{a+b}{a-b} = _____;$

解: 原式=
$$\frac{3+\sqrt{5}}{2}$$

3、若
$$\frac{a}{b} = \frac{7}{5}$$
, $\frac{b}{c} = \frac{3}{2}$, 则 $\frac{a-b}{b+c} =$ _____;

解: 原式=
$$\frac{6}{25}$$

4、将一段长为10厘米的线段进行黄金分割,那么较长的线段的长为;

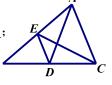
解:
$$5\sqrt{5}-5$$

5、已知点 P 是线段 AB 上的一点,且 AP 是 AB 与 PB 的比例中项,且 AP = 6cm,则 AB 的长为

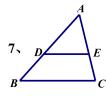
解:由已知点 P 是线段 AB 的黄金分割点且 AP > BP, $\therefore AP = \frac{\sqrt{5}-1}{2}AB$

$$\therefore AB = 3\sqrt{5} + 3$$

6、 *AD*, *CE* 是! *ABC* 中 *BC*, *AB* 边上的中线,则 *S*_{! *BDE*} : *S*_{! *ACD*} = _____



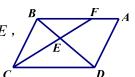
解: 设 $S_{!BDE} = x$,则 $S_{!ADE} = x \Rightarrow S_{!ACD} = 2x$, $\Rightarrow S_{!BDE} : S_{!ACD} = 1 : 2$ 。

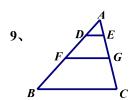


如图,! *ABC* 中, *DE // BC,BD*: *AB* = 2:5,则 *AE*: *EC* = _____; *DE*: *BC* = _____;

解: 易证 AE : EC = 3 : 2, DE : BC = 3 : 5。

8、已知:如图,平行四边形 ABCD中, $\angle BCD$ 的平分线交 BD 于 E , 交 AB 于 F ,AD : AB = 2 : 3,则 CE : EF = ______;

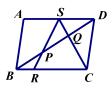




如图, *DE // FG // BC*, *AD*: *DF*: *FB* = 2:3:4,则

1

10、已知:如图,平行四边形 ABCD中,AD=12,P,Q 是对角线 BD 上两点,BP=PQ=QD,CQ 交 AD 于 S ,SP 交 BC 于 R ,则 BR= ______;



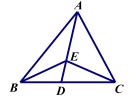
解: 易求
$$BR = \frac{1}{4}BC = 3$$

二、思维拓展:

11、已知
$$\frac{a+b+c}{b} = \frac{17}{5}$$
, $\frac{a+b-c}{b} = \frac{12}{5}$, 则 $\frac{a}{c}$ 的值为______;

解: 由已知: 5a+5b+5c=17b, 5a+5b-5c=12b,

解得
$$c = \frac{1}{2}b$$
, $a = \frac{19}{10}b$, $\therefore \frac{a}{c} = \frac{\frac{19}{10}b}{\frac{1}{2}b} = \frac{19}{5}$ 。



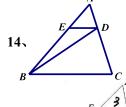
M:
$$\frac{S_{! BDE}}{S_{! ABE}} = \frac{S_{! CDE}}{S_{! ACE}} = \frac{DE}{AE}$$
,

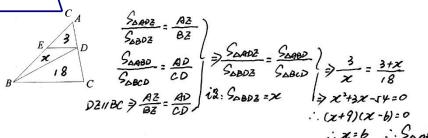
$$\therefore \frac{6}{21} = \frac{8}{S_{!ACE}} \Rightarrow S_{!ACE} = 28$$

13、如果点D黄金分割AB (AD > BD),点C黄金分割BA (BC > AC),CD = a,则AB 的长为_____;

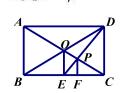
解: 设
$$AB = x$$
, 则 $AD = BC = \frac{\sqrt{5} - 1}{2}x$ $\therefore \frac{\sqrt{5} - 1}{2}x + \frac{\sqrt{5} - 1}{2}x - x = a$

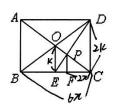
$$\therefore x = \left(\sqrt{5} + 2\right)a$$





15、如图: 在矩形 ABCD中,对角线 AC 、BD 相交于点 O ,过 O 作 $OE \perp BC$,垂足为 E ,连结 DE 交 AC 于 P ,过 P 作 $PF \perp BC$, 垂足为 F ,则 $\frac{CF}{CB}$ = _____;



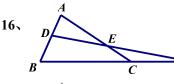


$$\frac{\partial z}{\partial D} = \frac{\partial z}{\partial D} = \frac{1}{2} \quad \text{if } 0Z = K.CD = 2K$$

$$\frac{\partial z}{\partial D} = \frac{\partial z}{\partial D} = \frac{1}{2} \quad \frac{\partial z}{\partial CF} = \frac{PZ}{PD} = \frac{1}{2}$$

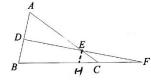
$$\text{if } zF = x. CF = 2x \quad \text{if } CZ = 3x. \quad z.BC = bx$$

$$\frac{CF}{CB} = \frac{2x}{bx} = \frac{1}{3}$$



如图: $\triangle ABC$ 中,设D、E是AB、AC上的两点, 且 BD = CE ,延长 DE 交 BC 的延长线于点 F , AB:AC=3:5 , EF=12cm ,则 $DF=___cm$;

VA. VIZHIAB 3 BCAH.

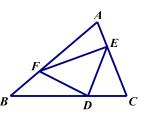


$$ZHIIAB \Rightarrow \begin{pmatrix} ZH \\ BD \end{pmatrix} = \frac{ZF}{DF}$$

$$\begin{vmatrix} ZH \\ AB \end{pmatrix} = \frac{CZ}{AC} \Rightarrow \frac{ZH}{CZ} = \frac{AB}{AC} \begin{vmatrix} AB \\ AC \end{vmatrix} = \frac{3}{7} \frac{2F}{2F} = \frac{2}{2}$$

$$BD = CZ \Rightarrow \frac{3}{AC} \Rightarrow DF = 20$$

17、如图,已知D, E, F分别在!ABC的边BC, AC, AB上,且 $\frac{AE}{AC} = \frac{CD}{BC} = \frac{BF}{AB} = \frac{1}{3}$, ! ABC 的面积为18,则! DEF 的面积



解: 易证
$$\frac{S_{!AEF}}{S_{!ABC}} = \frac{AE}{AC} \cdot \frac{AF}{AB} = \frac{1}{3} \times \frac{2}{3} = \frac{2}{9}$$

$$\therefore S_{!AEF} = \frac{2}{9} S_{!ABC}$$
,同理 $S_{!BDE} = \frac{2}{9} S_{!ABC}$, $S_{!CDE} = \frac{2}{9} S_{!ABC}$,

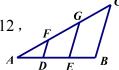
:
$$S_{!DEF} = \left(1 - \frac{2}{9} \times 3\right) \cdot S_{!ABC} = \frac{1}{3} S_{!ABC} = 6$$
.

第二讲: 比例线段(二)

一、基础练习:

1、如图, D, E 分别为 AB 的三等分点, DF // EG // BC, 若 BC = 12,

则 $DF = ______$, $EG = ______$;

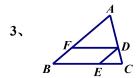


$$A \xrightarrow{G} C$$

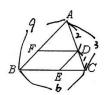
$$\begin{array}{cccc}
C & DF \parallel BC \Rightarrow \left\{ \begin{array}{c}
DF & AD & \frac{1}{3} \\
BC & AB & \frac{1}{3}
\end{array} \right\} \Rightarrow DF = 4$$

$$\begin{array}{ccccc}
BC & AE & \frac{1}{3} \\
BC & AB & \frac{1}{3}
\end{array} \right\} \Rightarrow 2G = 8$$

$$BC = 12$$



如图,在 $\triangle ABC$ 中,DE //AB, DF //BC, $\frac{AD}{AC} = \frac{2}{3}, AB$ = 9, BC = 6,则平行四边形 BEDF 的周长为______;

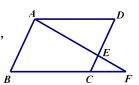


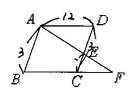
$$DF || BC \Rightarrow \left(\frac{DF}{BC} = \frac{AD}{AC}\right) \Rightarrow \frac{DF}{6} = \frac{2}{3} \Rightarrow DF = 4$$

$$\left(\frac{BF}{AB} = \frac{CD}{CA}\right) \Rightarrow \frac{BF}{9} = \frac{1}{3} \Rightarrow BF = 3$$

$$\therefore C_{17B2DF} = 2(DF + BF) = 14$$

4、如图,E 是平行四边形 ABCD 的边 CD 上一点, $CE = \frac{1}{3}CD$, AD = 12,那么CF的长为_____;

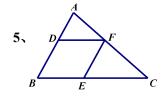




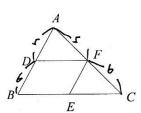
D ITABOD & ADIIBC &
$$\frac{AD}{CF} = \frac{DZ}{CZ}$$

$$CZ = \frac{1}{3}CD \Rightarrow \frac{DZ}{CZ} = \frac{2}{1} \Rightarrow \frac{12}{CF} = \frac{2}{1}$$

$$\Rightarrow CF = 6$$



如图, DF //BC, FE //AB, $\frac{AD}{DB} = \frac{5}{6}$, 那么 $\frac{BE}{BC} =$ ______;

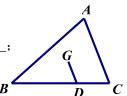


$$DFIIBC \Rightarrow \frac{AF}{CF} = \frac{AV}{BD} = \frac{5}{6} \Rightarrow \frac{AF}{Ac} = \frac{5}{11}$$

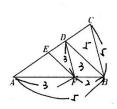
$$ZFIIAB \Rightarrow \frac{BZ}{BC} = \frac{AF}{Ac}$$

$$\Rightarrow \frac{BZ}{BC} = \frac{5}{11}$$

6、如图,点*G* 是!*ABC* 的重心,*GD // AC* ,则*CD* : *BC* = _________ **解: 易求** *CD* : *BC* = 1 : 3



7, B F B



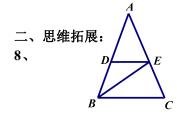
$$\frac{BC}{DF} = \frac{3}{3} \Rightarrow \frac{BC}{BC} = \frac{3}{1}$$

$$DF//BC \Rightarrow \frac{AF}{AB} = \frac{DF}{BC}$$

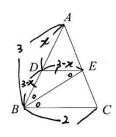
$$\Rightarrow \frac{AF}{AB} = \frac{3}{1} \Rightarrow \frac{BF}{AF} = \frac{3}{3}$$

$$EF//BD \Rightarrow \frac{DZ}{AZ} = \frac{BF}{AF}$$

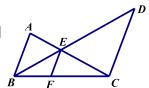
$$\Rightarrow \frac{DZ}{AZ} = \frac{3}{3} \Rightarrow \frac{C_{0AZF}}{C_{0AZF}} = \frac{AZ}{DZ} = \frac{3}{2}$$



如图,在 $\triangle ABC$ 中, BE 平分 $\angle ABC$, DE//BC , 如果 AB=3,BC=2 , 那么 AD= ________;



9、如图, *AB // EF // DC*, *AB* = 5, *BC* = 12, *CD* = 8,则 *EF* = ______;

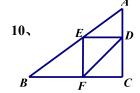


解一: 易证: $\frac{BE}{DE} = \frac{AB}{CD} = \frac{5}{8} \Rightarrow \frac{BE}{BD} = \frac{5}{13}$, 则 $\frac{EF}{CD} = \frac{BE}{BD} \Rightarrow EF = \frac{5}{13} \times 8 = \frac{40}{13}$,

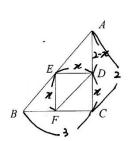
解二: **:
$$AB \text{ // }EF \text{ // }DC \Rightarrow \frac{EF}{AB} = \frac{CF}{BC}, \frac{EF}{CD} = \frac{BF}{BC}$$

$$\Rightarrow \frac{EF}{AB} + \frac{EF}{CD} = \frac{CF + BF}{BC} = 1 \Rightarrow \frac{1}{AB} + \frac{1}{CD} = \frac{1}{EF}, \Rightarrow \frac{1}{5} + \frac{1}{8} = \frac{1}{EF}$$

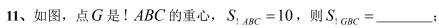
$$\Rightarrow EF = \frac{40}{13}.$$



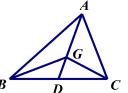
如图,四边形CDEF是直角三角形ABC的内接正方形,若BC=3,AC=2,那么DF=_______;



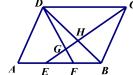
$$\begin{array}{c}
\overline{W}: DZ = CD = \chi & \text{Pi} AD = 2 - \chi \\
DZ IIBC \Rightarrow \frac{AD}{AC} = \frac{DZ}{BC} \Rightarrow \frac{2 - \chi}{2} = \frac{\chi}{3} \\
\Rightarrow \chi = \frac{b}{5} \Rightarrow DF = \frac{b\overline{D}}{5}
\end{array}$$



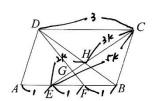
解: 易求
$$S_{!GBC} = \frac{1}{3}S_{!ABC} = \frac{10}{3}$$
。



12,

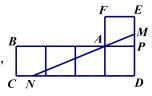


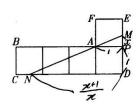
如图,平行四边形 ABCD中, E,F 是 AB 边上的两点, 且 AE = EF = FB , DB , DF 分别与 CE 交于 H , 则 EG:GH:HC =______;



BZ11CD > ZH = BZ = 2 is ZH=1K. CH=3K Q. CZ=1K ZFIICD > 26 = 2F = 1 : 26 = 4CZ = 4K, GH = 4K :, ZG:GH:CH: 5/K: 3/K:3K:5:3:12

13、六边形 ABCDEF 由五个正方形组成(如图),正方形的边 长都为1cm,过A的一条直线和ED、CD分别交于M、N, 若这个六边形在直线MN两侧的部分有相等的面积,设PM=x, 则x的值为 cm;





$$APIIDN \Rightarrow \frac{AP}{DN} = \frac{MP}{MD} \Rightarrow \frac{1}{DN} = \frac{x}{x+1} \Rightarrow DN = \frac{x+1}{x}$$

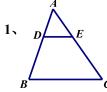
$$\therefore S_{\Delta DMN} = \frac{1}{2} \cdot \frac{x+1}{x} \cdot (1+x) = \frac{1}{2}$$

$$\Rightarrow x^{2} + 2x + 1 = 5x \Rightarrow x^{2} - 3x + 1 = 0$$

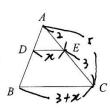
$$\therefore x = \frac{3 \pm \sqrt{5}}{2} \quad gx < 1 \quad \therefore x = \frac{3 - \sqrt{5}}{2}$$

第三讲:比例线段综合练习

、基础练习:



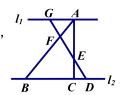
如右图 $\triangle ABC$ 中, DE//BC , 如果 AE:EC=2:3,BC-DE=3 ,

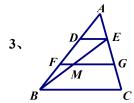


$$\frac{1}{10} \cdot DZ = X$$
 $\frac{1}{10} \cdot DZ = X$
 $\frac{1}{10} \cdot DZ = X$

2、已知:如图, $l_1 /\!/ l_2$, AF: FB = 2:5, BC: CD = 4:1,

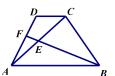
解: 易求 AE: EC = 2:1



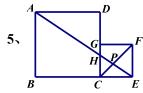


如图, DE // FG // BC, AD = DF = FB, 则 $\frac{FM}{MG} =$ _____; 解: 易求 $\frac{FM}{DE} = \frac{1}{2}$, $\frac{DE}{FG} = \frac{1}{2}$ $\Rightarrow \frac{FM}{FG} = \frac{1}{4}$, $\frac{FM}{MG} = \frac{1}{3}$.

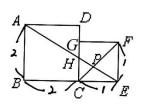
4、如图,梯形 ABCD, AB // DC, AB = 3CD, E 为 AC 中点, BE 延长线交 AD 于 F ,则 AF : $FD = ____$;



解: 延长 BF 交 CD 于 G , 易求 AF : FD = 3:2



F 如图,四边形 ABCD和 CEFG 是边长分别为 2 和 1 的正方形,且 B,C,E 在一直线上, AE 与 CF 交于 P ,那么 $\frac{CP}{PF}$ = ______;

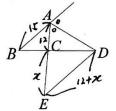


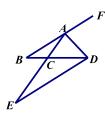
$$CHIIAB \Rightarrow \frac{CH}{AB} = \frac{CZ}{BZ} \Rightarrow \frac{CH}{2} = \frac{1}{3} \Rightarrow CH = \frac{2}{3}$$

$$CHIIZF \Rightarrow \frac{CP}{PF} = \frac{CH}{ZF} = \frac{2}{1} = \frac{2}{3}$$

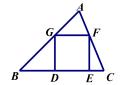
二、思维拓展:

6、如图,在 ΔABC 中, AB=15cm, AC=12cm, AD是 $\angle BAC$ 的外角的角平分线,DE//AB 交AC 的延长线于点E,那么 CE = 厘米:

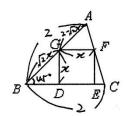




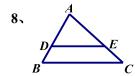
7、如图: 在 $\triangle ABC$ 中, AB=BC=2 , $\angle B=45^{\circ}$, 四边形 DEFG



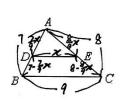
是它的内接正方形,那么 $S_{\scriptscriptstyle ext{T},\scriptscriptstyle ext{T},\scriptscriptstyle ext{T},\scriptscriptstyle ext{DEFG}} =$ ______



12. DG=GF=X J. BG=52X :. AG = 2-52X GFIBC > AG = GF = 2-52x = x => x = 2/5-2 : SIXAS DZFG = 12-8/2



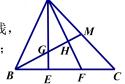
如图: 在 ΔABC 中, AB=7, AC=8, BC=9, DE//BC, 四 边形 BCED 的周长与 ΔABC 的周长比是 5:6 ,则四边形 BCED 的 周长为______, *DE* = _______;

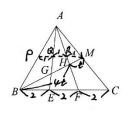


\$ 820 Carcap = 5 > Carray = 20

 $i2:D2=\chi.$ $BD2IBC \Rightarrow \frac{AD}{7} = \frac{\chi}{9} \Rightarrow AD = \frac{7}{9}\chi \qquad \therefore 7 - \frac{7}{9}\chi + \chi + 8 - \frac{9}{9}\chi + 9 = \chi_0$ $\left[\frac{AZ}{8} = \frac{\chi}{9} \Rightarrow AZ = \frac{8}{9}\chi \qquad \qquad \lambda \right]$ $\therefore BD = 7 - \frac{7}{9}\chi, \quad CZ = 8 - \frac{9}{9}\chi$

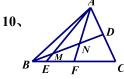
9、如图,已知在 ΔABC 中, E 、 F 三等分 BC , BM 是 AC 边上的中线, $AE \setminus AF$ 交BM 于 $G \setminus H$,则 $BG:GH:HM = ____$



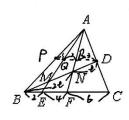


性基MN-MP/IBC 3·AF. AZZ美RQ 影洛MR:RQ:QP=CF:FZ:BZ=1:1:1 1/2 MR=RQ=QP=1 J-1 CF=FZ=ZB=2

島はMH=MR=L BH=4t 別BM=5t 2 MG = MQ = 1 : MG = BG = 5t : HG = 3t :. BG:GH:HM = 51: 3t:t=5:3:2



如图: 已知 E 、 F 为 ΔABC 的 BC 上的点,且 BE : EF : FC = 1 : 2 : 3 中线 BD 交 AE 、 AF 于 M 、 N ,则 BM : MN : ND = _______;



LEDIPDPIBC 3.AF. AZ子其尺,Q.

\$\langle PQ:QR:RD=BZ:ZF:FC=1:2:3 ig:PQ=1.RQ=2.DR=3 D1BZ=2,ZF=4.CF=6

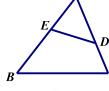
C \$13 DN = DR = 3 i2:DN=t, BN=2t. WI BD=3t

 $R = \frac{DM}{RM} = \frac{DQ}{BZ} = \frac{1}{2} \Rightarrow BM = \frac{2}{7}BD = \frac{b}{7}t$:: $MN = \frac{8}{7}t$

:. BM:MN:ND= 5t: 8t: t=6:8:7

第四讲:相似三角形的判定(1)

基础练习:

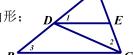


如图, $\triangle ABC \hookrightarrow \triangle ADE$, 若 $\angle ADE = \angle B$,则 $\angle C =$ ______;

$$\frac{DE}{BC} = \underline{\qquad} = \underline{\qquad};$$

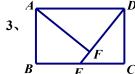
BABCMARDE = (LC = LAZD) $\frac{DZ}{BC} = \frac{AD}{AB} = \frac{AZ}{AC}$

2、如图,! ABC 中 , $\angle 1 = \angle 2 = \angle 3$, 则图中有_____对相似三角形;



解:易知! $ADE \sim !ACD \sim !ABC$,

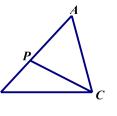
$$DE \# BC \Rightarrow \angle CDE = \angle BCD$$
,

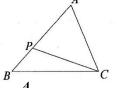


如图, 矩形 ABCD中, E 是 BC 中点, AB = 4, AD = 6, $AF \perp DE$,

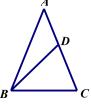
$$B$$
 E C 则 $AF =$ _____;
解: 易证! $ADF > ! DEC \Rightarrow \frac{AF}{DC} = \frac{AD}{DE} \Rightarrow \frac{AF}{4} = \frac{6}{5} \Rightarrow AF = \frac{24}{5}$

4、如图,P为 ΔABC 边AB上一点,要使 ΔACP \backsim ΔABC ,只需加条





5、



如图, AB = AC = 4, BC = BD = 3, 则 $AD = _____$;

解:易证! $CDB \sim !CAB \Rightarrow BC^2 = CD \cdot CA \Rightarrow CD = \frac{9}{4}$

$$AD = AC - CD = \frac{7}{4}$$

6、在 $\triangle ABC$ 中, D 是 BC 边上一点,且 $\triangle ABC$ \hookrightarrow $\triangle DAC$, CB : CA = 3:2,则 CD : DB的值为_____;

$$\begin{array}{c|c}
A & 2k \\
\hline
 & 3k \\
\hline
 & 3k$$

$$\frac{1}{2}CB:CA=3:2 \quad i\hat{\chi}:CB=3k.CA=2k$$

$$\frac{1}{2}CB:CA=3:2 \quad i\hat{\chi}:CB=3k.CA=2k$$

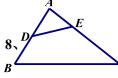
$$\frac{1}{2}CD:CB=\frac{1$$

二、思维拓展:

7、E,F 分别是等边! ABC 的边 AB,BC 上的点, $\angle ACE = \angle BEF$,BF:FC = 2:7,则 $AE:EB = ______;$

解: 由题意: 设 BF = 2k, FC = 7k,则 AB = BC = AC = 9k,设 BE = x,则 AE = 9k - x,

易证: $!BEF \hookrightarrow !ACE \Rightarrow \frac{BF}{AE} = \frac{BE}{AC} \Rightarrow \frac{2k}{9k-x} = \frac{x}{9k} \Rightarrow x^2 - 9kx + 18k^2 = 0$ $\Rightarrow x = 3k$ 或 x = 6k , $\therefore AE : EB = 1: 2$ 或 2:1 。



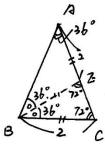
如图, $\angle ADE = \angle C$, AD = BD, AC = 3AE, BC = 6,则 $DE = _____;$

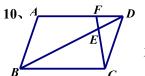
解:易证: $!ADE \hookrightarrow !ACB \Rightarrow \frac{AD}{AC} = \frac{AE}{AB}$,

设 AE = k, AC = 3k,又 $AB = 2AD \Rightarrow 2AD^2 = 3k^2 \Rightarrow AD = \frac{\sqrt{6}}{2}k$,

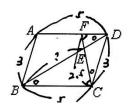
$$X \frac{DE}{BC} = \frac{AD}{AC} \Rightarrow \frac{DE}{6} = \frac{\frac{\sqrt{6}}{2}k}{3k} \Rightarrow DE = \sqrt{6}$$

9、在 ΔABC 中,AB = AC, $\angle A = 36^{\circ}$,且BC = 2,则AC =_______;





如图,平行四边形 ABCD中, AD=5, AB=3, $\angle DCF=\angle ADB$, CF 交 BD 于点 E , 交 AD 于点 F , 若 CF=2.5 ,则 BE 的长 为______;

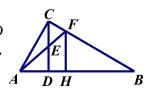


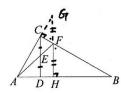
$$\angle DCF = \angle ADB = \angle DBC$$

$$ADIIBC \Rightarrow \angle DFC = \angle ZCB$$

$$\Rightarrow \frac{DC}{ZB} = \frac{CF}{BC} \Rightarrow \frac{3}{ZB} = \frac{2.5}{5} \Rightarrow ZB = 6$$

11、如图, $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$, $CD \perp AB \mp D$, $E \oplus CD$ 的中点,AE的延长线交 $BC \mp F$, $FH \perp AB$,垂足为H,CF = 3, FB = 12 若,则<math>FH =______;



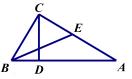


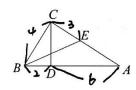
基本AC,HF 計算 G. 第12 FG = FH. ? 引 IZ AGCF い ABHF 》 $\frac{GF}{BF} = \frac{CF}{HF}$ \Rightarrow FH2=CF.BF=3×12=36 \Rightarrow FH=6

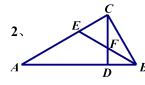
第五讲:相似三角形的判定(2)

一、基础练习:

1、已知,如图,CD是 $Rt\Delta ACB$ 斜边上的高,若AD=6,BD=2,CE=3,则BC的长度为_______;BE的长度为_______;

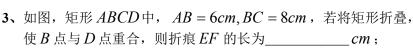


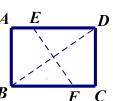


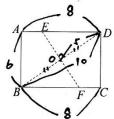


如图,Rt! ABC 中, $\angle ACB = 90^{\circ}$, $\angle A = 30^{\circ}$,BE 是 $\angle CBA$ 的平分线, $CD \perp AB$,则图中有______对相似三角形;

解:易证! $BFD \hookrightarrow$! $BEC \hookrightarrow$! $CBD \hookrightarrow$! $ABC \hookrightarrow$! ACD 有 10 对,又! $BCF \hookrightarrow$! ABE, 所以共 11 对。







4, G B M

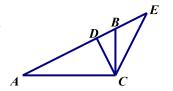
! ABC 中, $\angle ACB$ = 90°, AC 边上中线 BN 与 AB 边上中线 CM 互相垂直,且 BN^2 = $\frac{51}{2}$,则 BC^2 = _____;

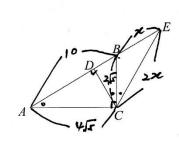
解: 易知点 G 为! ABC 重心,则 $BG = \frac{2}{3}BN$,

易证! $BCG \hookrightarrow ! BNC \Rightarrow BC^2 = BG \cdot BN$,

:
$$BC^2 = \frac{2}{3}BN^2 = \frac{2}{3} \times \frac{51}{2} = 17$$
.

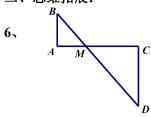
5、如图,在 $Rt\Delta ACB$ 中, $\angle ACB=90^{\circ}$, $CD\perp AB$,E 是斜 边 AB 延长线上一点, $\angle ECB=\angle BCD$, $AC=4\sqrt{5}cm$,, AB=10cm,则 BE=_____;



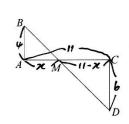


 $\frac{2}{3} |Z \triangle Z C B N \triangle Z A C| \Rightarrow \frac{ZB}{ZC} = \frac{BC}{AC} = \frac{\sqrt{F}}{4\sqrt{F}} = \frac{1}{2}$ $i \mathcal{Z} \cdot Z B = \mathcal{X}, \quad Z C = 2 \mathcal{X}$ $2 \triangle Z C B N \triangle Z A C| \Rightarrow \frac{ZC}{ZA} = \frac{BC}{AC} = \frac{2\sqrt{F}}{4\sqrt{F}} = \frac{1}{2}$ $\therefore \frac{2 \mathcal{X}}{\mathcal{X} + 10} = \frac{1}{2} \Rightarrow \mathcal{X} = \frac{10}{3}$ $\therefore BZ = \frac{10}{3}$

二、思维拓展:



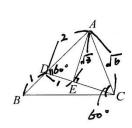
已知,如图, $AB \perp AC$, $AC \perp CD$, M 为线段 AC 上一动点, AB = 4cm, AC = 11cm, CD = 6cm, 当 $AM = ____$ 时, ΔABM 与以 M, C, D 构成的三角形相似;



OF DABMIND COM $\Rightarrow \frac{AB}{CD} = \frac{AM}{CM} \Rightarrow \frac{4}{b} = \frac{x}{11-x} \Rightarrow 3x = 22 - 2x$ $x = \frac{2x}{r}$ $O \stackrel{?}{>} DABMIND CMD \Rightarrow \frac{AB}{CM} = \frac{AM}{CD} \Rightarrow \frac{4}{11-x} = \frac{x}{b} \Rightarrow x^2 - 1/x + n4 = 0$ $\therefore x = 3 \text{ or } 8$ $\therefore AM = \frac{22}{r}, 3, 8,$

7, B = E

如图,在 $\triangle ABC$ 中, D 是 AB 上一点, AE \bot CD ,垂足为 E , AD=2 , DB=1 , $AC=\sqrt{6}$, 且 $\angle ACB=60^\circ$, 则 AE= ______; $\angle ACE=$ ______;



$$\frac{AC}{AC} = \frac{1}{16} = \frac{1}{3}$$

$$\Rightarrow \frac{AD}{AC} = \frac{AC}{AB}$$

$$\Rightarrow \triangle ACB \cap \triangle ABC$$

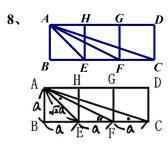
$$AC = \frac{16}{3}$$

$$\angle BAC = \angle BAC$$

$$\Rightarrow \angle ADC = \angle ACB = bo$$

$$\therefore AZ = \sqrt{3}, 2 AC = \sqrt{6} \therefore CZ = \sqrt{3}$$

$$\therefore \angle ACZ = 45^{\circ}$$



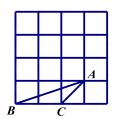
 $\frac{2F}{AZ} = \frac{A}{\sqrt{2}} = \frac{AZ}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2$

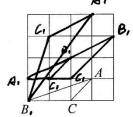
: DZAFUDZCA : LZAF=LACB

: LAFB+LACB = LAFB+ LZAF = LAZB = 45°

9、如图,在大小为 4×4 的正方形方格中, ΔABC 的顶点 A,B,C 在单位 正方形的顶点上,请在图中画一个 $\Delta A_1B_1C_1$,使 $\Delta A_1B_1C_1$ $\hookrightarrow \Delta ABC$,

(非全等)且点 A_1,B_1,C_1 都在单位正方形的顶点上;(能否找到三个)





注: 可要求学生画出所有情况。

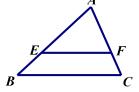
(正, 110, 17) (2, 112, 12) 三百分子》(1, 12, 12)

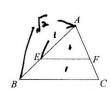
第六讲:相似三角形的性质

一、基础练习:

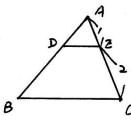
1、两个相似三角形面积之比是9:25,其中较小的一个三角形的周长为20,那么较大的一个三角形的周长为_____;

2、如图: 在 \triangle ABC中,已知 EF // BC ,且 $S_{\triangle AEF} = S_{\square DD RBCFE}$,则 AE : $BE = _____$;





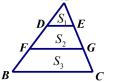
3、 在 $\triangle ABC$ 中,D、E分别在AB、AC上,且DE//BC,若AE=1,EC=2,则 $S_{\Delta ADE}: S_{\Delta ABC} = \underline{\hspace{1cm}}$



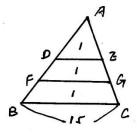
 $DZIIBC \Rightarrow \triangle ADZ n \triangle ABC \Rightarrow \frac{S_{\triangle ADZ}}{S_{\triangle ABC}} = \left(\frac{AZ}{AC}\right)^{2}$ $AZ=1, ZC=2 \Rightarrow \frac{AZ}{AC} = \frac{1}{3}$ $\Rightarrow \frac{S_{\triangle ADZ}}{S_{\triangle ABC}} = \frac{1}{9}$

$$\Rightarrow \frac{S_{0A03}}{S_{0A00}} = \frac{1}{9}$$

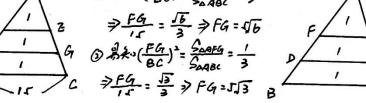
4、如图, DE // FG // BC, AD = DF = FB, 则 $S_1 : S_2 : S_3 =$ ____ **解:** $S_1:S_2:S_3=1:3:5$

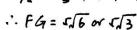


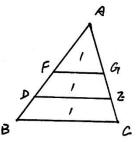
5、在 \triangle *ABC* 中, *BC* = 15*cm* , *DE* 、 *FG* 均平行 *BC* ,且将 \triangle *ABC* 的面积分成相等的 三部分,则FG =_



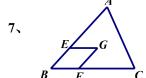
() = SAFG = = = 3







- **6、**在 $\triangle ABC$ 中, 点 D 、 E 分别在 AB 、 AC 边上, AD = 2cm , BD = AC = 6cm , BC = 10cm.如果以点 $A \setminus D \setminus E$ 为顶点的三角形与 ΔABC 相似,那么 ΔADE 的周长
- 解:由已知: $C_{\triangle ABC} = 24$,
- ①若 $\triangle ADE \hookrightarrow \triangle ABC$ 即 DE //BC,则 $\frac{C_{\triangle ADE}}{C_{\triangle ADE}} = \frac{AD}{AB} = \frac{1}{4} \Rightarrow C_{\triangle ADE} = 6$
- ②若 $\triangle ADE$ \hookrightarrow $\triangle ACB$,则 $\frac{C_{\triangle ADE}}{C_{\triangle ACB}} = \frac{AD}{AC} = \frac{1}{3} \Rightarrow C_{\triangle ADE} = 8$,此时 $AE = \frac{8}{3} < 6$ 在 AC 边上。



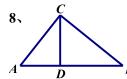
如图,G是! ABC 的重心, $EG \parallel BC, GF \parallel AB$,则

解:连结CG交延长交AB于点M,连结EF,

易证:
$$\frac{BE}{BM} = \frac{CG}{BM} = \frac{2}{3}$$
, $\frac{BM}{AB} = \frac{1}{2}$, $\therefore \frac{BE}{AB} = \frac{1}{3}$

同理
$$\frac{BF}{BC} = \frac{1}{3}$$
, $\therefore EF \parallel AC$, $\therefore !BEF \backsim !BAC$, $\therefore \frac{S_{!BEF}}{S_{!BAC}} = \left(\frac{BF}{BC}\right)^2 = \frac{1}{9}$, $\therefore S_{!ABC} : S_{\text{***}} : S_{\text{***$

二、思维拓展:

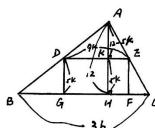


如图,
$$Rt!$$
 ABC 中, $\angle ACB = 90^{\circ}$, $CD \perp AB$, $\frac{AC}{BC} = \frac{3}{4}$, 则

$$\frac{AD}{BD} = \underline{\qquad};$$

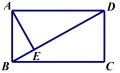
解:由!
$$ACD \sim !CBD \Rightarrow \frac{S_{!ACD}}{S_{!CBD}} = \left(\frac{AC}{BC}\right)^2 = \frac{AD}{BD} \Rightarrow \frac{AD}{BD} = \frac{9}{16}$$
。

9、在 $\triangle ABC$ 中,AH 是BC 边上的高,内接矩形DEFG 的边GF 在BC 上,AH = 12cm , BC = 36cm, GF : EF = 9:5,则内接矩形 DEFG 的周长为



$$\Rightarrow \frac{12-5k}{1} \Rightarrow \frac{9k}{2k_3} \Rightarrow k = \frac{3}{2}$$

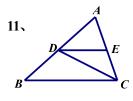
10、如图,在矩形 ABCD中, $AE \perp BD$ 于 E , $S_{\text{矩形}} = 40cm^2$, $S_{\Delta ABE}: S_{\Delta DBA} = 1:5$, AE 的长为______;



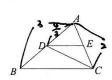
SLABZ:
$$S_{ADBA} = 1: \Gamma \Rightarrow \frac{S_{AABZ}}{S_{AAOZ}} = \frac{1}{4}$$

$$\Rightarrow \frac{1}{AD} \Rightarrow \frac{1}{4} \Rightarrow \frac{AB}{AD} = \frac{1}{2}$$

$$\triangle ABZ \times \Delta DAZ$$



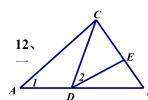
 \therefore $AZ = \frac{2 \sum_{QQ}}{QQ} = \psi$ 如图: 在 \triangle ABC 中,AB = 3,AC = 2, $S_{\triangle ABC} = 2$, $\angle ACD = \angle B$, 点D在AB上,DE//BC,则 $S_{\text{四边<math>\mathcal{R}BCED}}=$ ______;



$$LACD = LB ? \Rightarrow \triangle ACD \cap \triangle ABC \Rightarrow \frac{AC}{AB} = \frac{AD}{AC} \Rightarrow AC^2 = AD \cdot AB ?$$

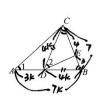
$$LA = LA | \Rightarrow \triangle ADZ \cap \triangle ABC \Rightarrow \frac{S_{AADZ}}{S_{AABC}} = (\frac{AD}{AB})^2 = \frac{15}{81} ? \Rightarrow S_{AADZ} = \frac{32}{81}$$

$$S_{ABC} = 2$$



 $\therefore S_{GBCZO} = 2 - \frac{32}{g_I} = \frac{/30}{g_I}$ 如图, ΔABC 中,D是AB上一点,AD:DB=3:4,E是BC上

 $\Delta_{\mathbf{B}}$, 如果 DB = DC, $\angle 1 = \angle 2$,那么 $S_{\Delta ADC}$: $S_{\Delta DEB} =$ _______;



$$3\frac{1}{12} \triangle CDZ \cap \triangle BAC \Rightarrow \frac{CD}{BA} = \frac{CZ}{BC}$$

$$3\frac{1}{12} AD = 3K, DB = 4K$$

$$3\frac{1}{12} AB = 7K, CD = 4K$$

$$\frac{3}{S_{ADBC}} = \frac{BZ}{BC} = \frac{3}{7} \quad i\hat{Z}: S_{ADBZ} = 3t, S_{ABCD} = 7t$$

$$2\frac{AD}{DB} = \frac{3}{4} \Rightarrow \frac{S_{AACD}}{S_{ABCD}} = \frac{3}{4} \Rightarrow \frac{S_{AACD}}{7t} = \frac{3}{4} \Rightarrow S_{AACD} = \frac{3t}{4}t$$

$$\frac{S_{AACD}}{S_{ADEB}} = \frac{3t}{3t} = \frac{7}{4}$$

第7讲答案

1,
$$\vec{a} - 17\vec{b}$$
; 2, B; 3, B; 4, D; 5, $\frac{1}{2}\vec{a} + \frac{1}{2}\vec{b}$; 6, $\frac{1}{2}\vec{e}$; 7, $-\frac{1}{3}\overrightarrow{AD} - \frac{1}{6}\overrightarrow{AB}$; 8, D;

9、
$$-2\vec{a}$$
; 10、B; 11、4; 12、 $-\frac{2}{3}\vec{a}$; 13、 $\frac{1}{2}\vec{a}-\vec{b}$; 14、C; 15 略;

16, (1)
$$\overrightarrow{AM} = \frac{1}{2}\overrightarrow{c}$$
, $\overrightarrow{MN} = \frac{1}{2}\overrightarrow{a}$; (2) $\frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{c}$; 17, (1) $\overrightarrow{a} + \overrightarrow{c}$; (2) $\frac{1}{2}\overrightarrow{c} - \frac{1}{2}\overrightarrow{a}$;

第8讲答案

训练组(1)

1、BC; AC;
$$\frac{BC}{AC}$$
; $\frac{AC}{BC}$; 2、 $\tan 34^{\circ}$; 余切; 3、余切; 正切; 4、 $\frac{\sqrt{2}}{4}$; 5、 $\frac{4}{3}$;

6,
$$\frac{1}{3}$$
; $\frac{1}{3}$; 7, $15 \tan \alpha$; 8, $\frac{3}{2}$; $\frac{2}{3}$; 9, $\frac{2}{3}$; $\frac{3}{2}$; 10, 3;

训练组(2)

1、余弦;
$$\frac{AC}{AB}$$
; 余弦; $\cos B$; 2、 $\frac{1}{2}$; 3、 $\frac{\sqrt{2}}{2}$; 4、 $\frac{3}{4}$; 5、 $\frac{15}{17}$; 6、 $c \cdot \cos \alpha$;

7.
$$\frac{1}{3}$$
; 8. 1; 9. B; 10. D; 11. $\sin B = \frac{4}{5}$; $\cos B = \frac{3}{5}$; 12. $\cos \alpha = \frac{2\sqrt{2}}{3}$; $\tan \alpha = \frac{\sqrt{2}}{4}$;

13,
$$\frac{4}{5}$$
;

第9讲答案

训练组(1)

1、 $\angle 1$; $\angle FBD$; 仰; $\angle BAC$; 仰; $\angle 3$; 2、115.5; 3、 $AC \tan \alpha$; $AC \cos \alpha$;

4.
$$10\sqrt{3} + 20$$
; 5. $AB = 10 + \frac{10\sqrt{3}}{3}$; $\frac{10\sqrt{3}}{3}$; 6. 81 \pm ; 7. 113.2;

训练组(2)

1. B; 2.
$$i = \frac{h}{l}$$
; $i = \tan \alpha$; 3. $\frac{3}{4}$; 6; 4. $\sqrt{3}$; 5. $\frac{5}{12}$; 6. (1) 🛱; (2) $\frac{25\sqrt{3}}{2}$

7, (1) 30; (2) 3: 4; 8, (1) 30^{0} ; (2) $87 + 18\sqrt{3}$; (3) $87000 + 18000\sqrt{3}$; (4) 27;

第10讲答案

1. A; 2. B; 3. D; 4. C. 5. A; 6. B; 7.
$$\frac{12}{7}$$
; 8. 6; 9. 55; 10. $3\sqrt{5}-3$; 11. 4;

12,
$$\frac{\sqrt{2}}{2}$$
; 13, $\sqrt{3}$; 14, $\frac{5}{6}$ $\pm \frac{3}{10}$; 15, 6; 16, $\frac{2}{3}\vec{a} + \vec{b}$; 17, $\frac{24}{25}$; 18, $\frac{2}{5}$; 19, $\sqrt{3} + \frac{3}{4} - \frac{\sqrt{6}}{2}$;

20、略; 21、
$$3\sqrt{2} + \sqrt{6}$$
; 22、12; 23、(1) 略; (2) $\frac{3}{4}$; 24、(1) $\frac{12}{13}$; (2) 13;

25、(1) 略; (2)
$$y = \frac{(x-2)^2}{2x} (0 \prec x \prec 2)$$
; (3) 1

第11讲

训练组(1)

1, 2, 3, (1)
$$y = x^2 - 2x - 3$$
; (2) $B(-1,0), C(3,0)$; (3) 8; (4)

$$M(1-2\sqrt{3},8),(1+2\sqrt{3},8)$$
 4, (1) $y=x^2-9$; (2) 5 5, $\frac{8}{3}$

训练组(2)

1.
$$y = -2x^2 + x + 3$$
 2. $y \ge -1$ 3. BY 4. $y = x^2 - 2x - 3$

第12讲

1、(1) 2; (2) 5; (3)
$$6+2\sqrt{15}$$
 2、(1) $y=-\frac{1}{12}x^2+x+2$; (2) 13.8 米 3、 $\frac{7}{4}$ 5、(1) 能投中; (2) 略

第13讲

1、(1) ①过 P 作 LOA 于 H, PN LOB 于 N, 证 △PCH ≌ △PDN 得 PC=PD.

(2)
$$0P=1$$
, $0P=\sqrt{2}-1$

2, (1)
$$y = -\frac{5}{6}x^2 + \frac{13}{6}x + 1$$

(2) 过 D 作 DH ⊥ OC 于 H, 证 ⊿ ADF ≌ ⊿ HDG 得 HG=AF=1, 得 OG=1, 再求得 EF=2. 得 EF=2OG.

(3) Q (1,
$$\frac{7}{3}$$
), Q($\frac{12}{5}$, $\frac{7}{5}$), Q (2, 2)

第14讲

1、(1) C (-4,0) (2) ①证明略 ②存在点 P,P(
$$-\frac{9}{4}$$
,0),P(0,0)

2. CF=2, CF=
$$\frac{5}{2}$$
, CF= $4\sqrt{2}-3$

(2) ①
$$y = -\frac{1}{2}x^2 + \frac{5}{2}x - 2(1 < x < 4)$$
 ② AP=2, AP=3 - $\sqrt{5}$

第15讲

1. (1)
$$y=-\frac{1}{2}x^2+x+4$$

(2) D (1,
$$\frac{9}{2}$$
) 在直线 EC 上.

(3)
$$t=2$$
, $t=-\frac{1}{2}$

2. (1)
$$y=-\frac{4}{21}x^2+\frac{40}{21}$$

(2)
$$AP = \sqrt{x^2 - 6x + 25}$$

(3)
$$l = \frac{x^2 - 10x + 25}{x} (0 < x < 10)$$

(4)
$$x = \frac{8 \pm \sqrt{14}}{2}, x = 5$$