
初三物理春季班学案

目录

第四讲 热和能		2
第五讲 压强单元复习	习	6
第六讲 电路单元复习	习(1)	10
第七讲 电路单元复义	习(2)	14
第九讲 光学专题复习	习	18
第十讲 压强专题复习	习 (1)	22
第十一讲 压强专题复	复习(2)	26
第十二讲 电路专题复	复习(电路分析)	29
第十三讲 电路专题复	复习(计算分析)	33
第十五讲 电路专题复	复习(综合)	37
第十六讲 实验复习		41
第十七讲 考点复习		45
第十八讲 考点复习		49

第四讲 热和能单元复习

〖知识点梳理〗

[基础练习]						
1. 温度是表示物体		的物理量,温	度的单位	,测量	工具是	o
摄氏温标规定:把_	的温度	规定为0摄氏	度;把	的温	度规定为 100) 摄氏度。
2. 物质是由	组成;分子	是做	的运动	动;分子之间?	字在	0
3. 热量是指物体在	过程	中,吸收或放	出的	多少。单位	是)
物体吸收或放出的热	^{热量与}		`	有	关。	
4. 比热容是指	的某种物质温	是度升高或降低	氐时		的热量。	
比热容是物质的	,它的大小	、是由	决定。	单位是		0
5. 内能是指物体内	所有分子	和分子	的总和	1。内能的大小	与物体的	
和状态	有关。改变物体内	引能的方式:_		_和	o	
6. 内燃机的四个冲	程为、		`		o	
其中: 机械能转化原	戏内能的冲程是 <u></u>	, ¾	5塞的运动方	`向	o	
内能转化成构	几械能的冲程是	, ¾	5塞的运动方	向	o	
〖典型例题辅导	导与练习 〗					
1. 如图 1 所示是常	7用温度计,它的液	测量范围是	°℃;	它的最小分度	重值为	℃;它的
示数为℃。若	告用这支温度计测	开水的温度时	寸, 当玻璃泡	1浸入开水的脚	解间,将观察:	到的现象
是	。过一段时间后	ā,温度计的ā	示数不再上升	,是由于		0
	100100100100100100 20 10 0	սհասահայտուհա	utaarlaantaarlaanta	ulaataalaataalaa		<u> </u>
	20 10 0	10 20 30	40 50	60 70 80	90 100	30 图 1
2. 物体内	分子的	运动叫做热	运动。轿车	中打开瓶盖的	香水,车内充	满香味。
议种现象叫做	. 这一现象说	組. 一切物の	太的分子都在	:		

3. 如图 2 所示,将两个底面平整、干净的铅柱紧压后,两个铅柱就会结合在一起,即使在下面吊一 个较重的物体也不会将它们拉开。这个实验表明 图2 图 3 (a) (b) 图 5 4. 改变物体内能的方式有两种。在如图 3(a)、(b) 所示中,图 3(a) 是通过 的方 式改变物体内能的,图 3(b)是通过 的方式改变物体内能的。且图(a)、(b)这两种方式 在改变物体的内能上是的。 5. 如图 4 所示,为汽油机工作时某个冲程的示意图,这个冲程的名称是(A. 吸气冲程。 B. 压缩冲程。 C. 做功冲程。 D. 排气冲程。 6. 为了研究物体吸收热量跟液体种类的关系,如图 5 所示用两只完全相同的烧杯甲和乙分别装入液 体,两个杯子中分别插入相同的温度计,用两个完全相同的酒精灯给它们加热。 (1) 甲、乙两杯液体除初温相同外,加热前还应满足下列条件: (2) 实验时酒精灯要放在两杯中间,其目的是为了_____ (3) 点燃酒精灯开始加热,要观察两支温度计的示数,当____ 相同时,通过计时器记录 加热时间来判断 7. 为了研究物质的某种特性,某小组的同学先做如下实验:他们在甲、乙两只完全相同的烧杯中分 别放人 100 克和 200 克的温水,实验时,让它们自然冷却,并利用温度计和计时器测量水的温度随 时间的变化情况。记录数据分别如表一、表二所示。(设甲、乙两杯水每分钟放出的热量相等) 表一 m₁: 100 克 时间(分) 0 10 12 2. 6 16

温度		36	35	34	33	32	31	30	30	30
降低温	度(℃)	0	1	2	3	4	5	6	6	6
表二 $m_2 = 200 \text{克}$										

时间(分) 20 0 4 12 16 24 28 32 36 温度(℃) 34 32 28 36 35 33 31 30 29 28 降低温度(℃) 0 1 2. 3 4 5 6 7 8 8

- (1) 分析比较表一和表二中的数据可知,实验时,两杯水所处环境的温度是 的(选填"相同" 或"不同")。
- (2) 分析比较表一(或表二)中第一行和第三行的数据及相关条件,可得出的初步结论是:

(3) 分析比较表一和表二中的第三列、第四列、第五列等数据及相关条件,可得出的初步结论是:

(4) 进一步综合分析比较表一和表二中的数据及相关条件,还可得出的初步结论是:

8. 为了研究物质的某种特性,小华和小海同学先做如下实验:他们在两只完全相同的 烧杯中分别放入不同质量的水和煤油,实验时,用相同的酒精灯分别给它们加热,并利 用温度计和计时器测量水和煤油的温度随时间的变化情况。记录数据分别如表一、表二、 所示。(加热时设水和煤油每分钟吸收的热量相等)

图 6

表一: 水

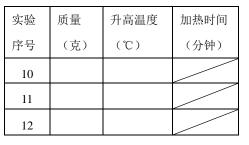
实验	质量	升高温度	加热时间					
序号	(克)	(℃)	(分钟)					
1	50	5	1					
2	100	5	2					
3	150	5	3					
-			_					

实验	质量	升高温度	加热时间
序号	序号 (克) (℃)		(分钟)
4	50	5	2
5	100	5	4

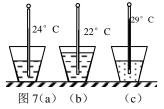
150

表二: 煤油

(1) 分析比较实验序号 1、2 与 3 或 4、5 与 6 中数据及相关条件,可得出的初步结论是:


(2)分析比较实验序号 的数据及相关条件,可得出物体吸收的热量

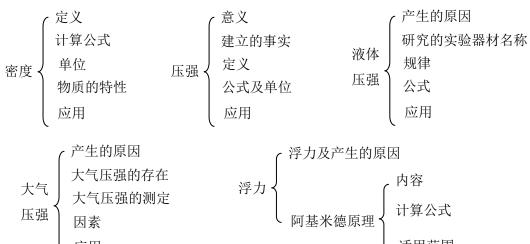
与液体种类的关系。


表三

(3) 进一步综合分析比较表一、表二数据及相关条件,可得 出的初步结论是: ____

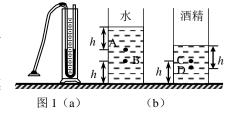
(4) 为了使小华和小海同学的探究目的更全面,请在表三的 第二、三列填入拟进行实验的数据,以实现与表一数据进行 比较,达到研究目的。

9. 为了研究物质的某种特性,某小组同学先做如图 7 所示的实验:在 三只完全相同的杯子中分别放入温度都为 20℃的 100 克水、200 克水和 200 克沙子,各插入一支温度计,并在杯口上盖上一薄塑料片,然后同 时放在阳光下晒 10 分钟时,观察到温度计的示数如图 (a)、(b)、(c) 3 所示。请根据实验现象及相关条件归纳得出初步结论。

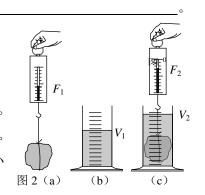

- (1) 比较图(a)和(b)两图可得:
- (2) 比较图 (b) 和 (c) 两图可得:
- 10. 质量不同的甲、乙两块铜块,甲铜块的质量大于乙铜块的质量,当它们放出相等的热量之后, 把它们放在一起,则()
 - A. 热量由甲铜块传给乙铜块。
 - B. 热量由乙铜块传给甲铜块。
 - C. 甲铜块和乙铜块之间没有发生热传递。
 - D. 条件不足, 无法判断。

〖提高训练〗

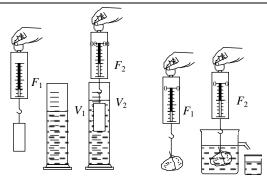
							十四秋月		
1. 下列现象中,能力									
A. 春天,柳絮飞扬。 B. 夏天,汗流如雨。 C. 秋天,桂花飘香。 D. 冬天,雪花飘舞。									
2. 如图所示, 弯折手中的铁丝, 铁丝不容易被折断, 是因为分子间有,									
同时,弯折处发烫,这是因为可以改变物体的增加。									
红墨水滴入盛入热水的烧杯时,整杯热水很快变红了,请你用分子动理论来 图1									
解释:				o					
3. 把质量和温度都	相同的铁块、	铝块、铜块	央同时放入-	一个冰箱中,	过了一段征	艮长时间后,	三个金属		
块降低的温度	(选填"相同	"、"不相同	"),其中放	(出热量最多	的是块	:。 (c 铝>c 铁	$>_{c}$ $_{rak{h}})$		
4. 大气压强产生的等	实质微观上是	是由于气体会	分子的热运	动,导致气体	体分子对物	体表面撞击	而产生的。		
(1) 根据大气压强流	产生的实质,	可以推测:	: 微观上同	一时刻物体是	表面各处受	到的大气压	强是		
(选填"相	等"或"不相	等")的,理	里由是:			o			
(2) 以下关于影响;	大气压强大/	小的因素推	则合理的是	:	o				
A. 空气分子排列	的紧密程度	0							
B. 物体表面与空	气分子的接	触面积。							
C. 温度的高低。									
5. 小华根据"宏观	世界中物体	由于运动而	具有的能量	叫做动能"	的。	♀ →	<u>†</u> 9 2 9		
知识,类比得出:微	观世界中组	L成物体的分	·子具有分子	一动能。		 → 10 إلى المحمد المح			
(1) 请写出小华得	出组成物体	的大量分子	具有分子动	能的依据是					
分子具有	且分子在_		o			→ □			
(2) 类比宏观世界。	中物体的动	能有大小,	微观世界中	的分子动能	也。	<u> </u>	В		
有大小。						图 2			
(a) 如图 2 表示不同	同时刻某物包	体内部分子员	运动情况(箭	头越长代表	分子运动越位	快),	图的分		
子动能较大。									
(b) 如果要衡量某-	一物体中所有	有分子动能的	的大小,可	以用宏观世	界中的物理	量	来反映。		
6. 小海查得4℃时均	均为1厘米 ³	的三种液体	在不同温度	医时的体积如	下表所示:				
温度/℃									
体积/厘米 ³	8	16	24	32	40	48	56		
种类									
甲	1.006	1.018	1.030	1.042	1.054	1.068	1.080		
Z	1.002	1.004	1.006	1.008	1.010	1.012	1.014		
丙	1.002	1.010	1.070	1.200	1.300	1.600	1.800		
(1) 4 ℃时 1 cm 3 的丙液体在 48 ℃时的体积为厘米 3 。乙液体的体积大小随温度变化的规律									
是:一定质量的乙液	[体,				o				
(2) 小伟认为甲液体	(2) 小伟认为甲液体比乙和丙更适合作为温度计玻璃泡中的感温液,请你帮他写出选择甲液体的依								
据							o		


第五讲 压强单元复习

【知识点梳理】



〖实验辅导〗


- 2. 在"探究液体内部的压强与哪些因素"的实验中, 小华用图 1 (a) (b) 所示的器材进行实验。
- (1)图(a)所示装置的名称是。
- (2) 为了探究液体内部压强与液体密度的关系,可将带橡皮膜的塑料盒先后放在_______位置(请填写字母)。
- (3)为了探究液体内部压强与深度的关系,可将带橡皮膜的塑料盒先后放在图(b)_____位置(请填写字母), 并观察。

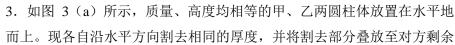
- (4) 为了探究液体内部压强与方向的关系,说出具体操作:___
- 3. 小华同学在"验证阿基米德原理"实验中,量简盛有适量的水,
- (1) 根据图 2 (a) (c) 可以测出 。
- (2) 根据图(b)(c)直接可以测出
- (3)接下去比较 和 ,实验结论就可以验证。
- (4) 实验中 (选填"需要"或"不需要") 验证浮在液面上的物体。
- 4. 小明和小华各自做"验证阿基米德原理"实验,如图 3(a) 所示为小明实验的示意图,图(b) 所示为小华实验的部分示意图。

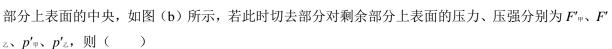
- (1) 在小明的实验示意图中, 弹簧测力计的示数值 分别为 F_1 、 F_2 和量筒中水面刻度值分别为 V_1 、 V_2 , 若满足关系式 时,则可以 验证阿基米德原理。
- (2) 在小华的实验示意图中,使用了溢水杯和小烧 杯,为了减小实验误差,实验前往溢杯中注水,直 到 , 说明溢杯已装满水, 如 果小华接着使用电子天平成功完成实验,天平应测 量 (选填"溢水杯"或"小烧杯")中水的质

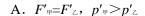
(a) 小明的实验步骤示意图 (b) 小华实验的部分示意图

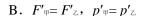
量 m_{*} 。若满足的关系式为___

,阿基米德原理得到证实。

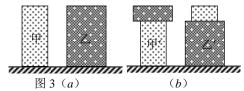

[压强变化分析训练]

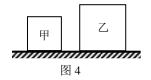

- 1. 如图 1 所示, 甲、乙两个实心均匀正方体静止在水平地面上, 它们对地面的压强相等。若在两个 正方体的上部,沿水平方向分别截去相同高度。则它们对地面压力的变化量 ΔF_{\parallel} 、 ΔF_{\geq} 的关系是(
- A. $\Delta F_{\text{\tiny T}}$ 一定大于 $\Delta F_{\text{\tiny Z}}$ 。
- B. ΔF_{\parallel} 一定小于 ΔF_{\perp} 。
- C. ΔF 甲可能大于 ΔF Z.
- D. ΔF 甲可能小于 ΔF Z.



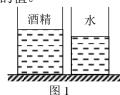

图 2

- 2. 如图 2 所示,底面积不同的圆柱形容器分别盛有甲、乙两种液体,液体对各自容器底部的压力相 等。现分别从两容器中抽出液体,且剩余液体的液面到容器底部的距离均
- 为 h,则剩余液体对各自容器底部的压强 p、压力 F 的关系是(
- A. $p = p \subset F \subset F$
- B. $p \neq p \leq p \leq r \neq F \leq r$
- C. $p \neq p \leq r$; $F \neq p \leq r \leq r$

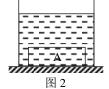




- C. $F'_{\text{\tiny \parallel}} > F'_{\text{\tiny \angle}}$, $p'_{\text{\tiny \parallel}} > p'_{\text{\tiny \angle}}$
- D. $F'_{\text{\tiny H}} \leq F'_{\text{\tiny Z}}, p'_{\text{\tiny H}} > p'_{\text{\tiny Z}}$



- 4. 甲、乙两个均匀正方体 $(\rho_{\parallel} > \rho_{\perp})$ 分别放在水平地面上,它们对水平地面的压强相等。现沿水 平方向分别在甲、乙正方体上截去一部分,且截去部分的质量相等,如图 4 所示,则所截去的高度 $h_{\text{\tiny T}}$ 、 $h_{\text{\tiny Z}}$ 的关系是()
- A. h_{H} 一定大于 h_{Z} 。 B. h_{H} 一定小于 h_{Z} 。
- C. $h_{\text{\tiny H}}$ 可能大于 $h_{\text{\tiny Z}}$ 。 D. $h_{\text{\tiny H}}$ 可能等于 $h_{\text{\tiny Z}}$ 。


[压强计算练习]

- 1. 如图 1 所示,盛有酒精和水的两个足够高的薄壁柱形容器置于水平地面上,若向容器中分别倒入相同质量的原有液体,倒入前后液体对容器底部的压强记录在下表中。(ρ 酒精=0.8× 10^3 千克/米 3)
- (1) 求倒入后容器中酒精的深度 h 酒糖。
- (2) 若倒入后容器中酒精的质量为 4 千克, 求酒精的体积 V 酒糖。
- (3) 求两个容器的底面积 $S_{inf}: S_{inf}$ 的值。

液体对容器底部的压强	倒入前	倒入后
p 酒精 (帕)	1176	1568
p * (帕)	1176	1960

- (1) 容器底部受到的水的压强 p *。
- (2) A 放入后容器对水平地面的压强增加量 Δp_{\pm} 。
- (3)若容器的内现将 A 由原平放改成竖放在水中,水对容器底的压强变化量 Δp * 为 0 帕。求物体 A 的最小密度 ρ 最小。

- 3. 水平地面上有一底面积为 2×10^{-2} 米 2 的薄壁柱形容器 A(容器足够高),另有一个底面积为 1×10^{-2} 米 2 的合金圆柱体 B,容器 A 中盛有水,将 B 放入水中,分别测出 B 放入容器前后,容器对水平桌面的压强 p_{*} 、水对容器底部的压强 p_{*} ,如下表所示。求:
- (1) 容器中水的质量 m 水。
- (2) 求圆柱体 B 的最小高度 h_{Bd} 。
- (3) 圆柱体 B 的最大密度值 $\rho_{\text{ B}}$ 大。

	B放入前	B 放入后
p ※ (帕)	1470	5390
p * (帕)	980	1960

- 4. 如图 3 所示,质量为 0.2 千克、底面积为 1×10^2 米 2 的圆柱形容器,内盛 2 千克的水后置于水平地面上,现将一质量为 2.5 千克、密度为 2.5×10^3 千克/米 3 的物块,完全浸没在容器的水中后,测得容器底部受到水的压强为 2450 帕。求:
- (1) 未放入物块前容器对水平地面的压强 p 容。

(2)	物块的体积V。	
(4)	1/1/2/CHITPH/1/1 V o	

(3) ①完成表格的填写。

压强	甲放入前	甲放入后
p * (帕)		2450

②根据表格中的数据判断: 当放入物块后,容器中的水_____(选填"溢出"或"没有溢出"),说出理由。并求容器底部对水平地面压强的增加量 Δp 。

5. 某兴趣小组同学为了比较物体浸入液体前后液体对容器底部压强变化量 Δp_{**} 和容器对地面压强变化量 Δp_{**} 之间的大小关系,进行了一系列相关实验。实验中,他们在一柱形容器内装入适量某液体,然后将不同密度、不同体积的物体浸入液体中,待物体静止后,利用仪器测出了 Δp_{**} 和 Δp_{**} ,并将实验结果记录于如表。


实验序号	1	2	3	4	5	6	7
实验情形							
ρ _物 (千克/米 ³)	700	800	1200	1200	1200	2400	3600
V _物 (米 ³)	1×10 ⁻³	1×10 ⁻³	1×10 ⁻³	2×10 ⁻³	3×10 ⁻³	1×10 ⁻³	1×10 ⁻³
Δp 液 (帕)	700	800	1000	2000	3000	1000	1000
Δp ± (帕)	700	800	1200	2400	3600	2400	3600

- (3) 该小组同学计算了不同物体沉底时 Δp_{**} 与 Δp_{**} 的差值,又有新的发现:
- (a) 分析比较实验序号 3、6 和 7 的数据可以得出结论:

(b)	分析比较实验序	号 3、	4 和 5	的数据只	以得出结论:
-----	---------	------	-------	------	--------

第六讲 电路单元复习

〖知识点梳理〗

()
[基本概念]
1. 电流是由于电荷的产生的。电路中,流过某导体的电流为 0.2 安,表示的物理意
思是
通过导体横截面的电荷量越多,通过导体的电流(选填"一定"或"不一定")大。
2. 导体中的自由电荷定向移动形成电流的原因是。照明电路的电压为伏,一节
干电池的电压为
流通过,导体两端(以上两格选填"一定"或"不一定")有电压。
3. 世界上首次制成能连续供电电源的物理学家是, 首先发现电流和电压关系的物理学家
是。
4. 导体对电流有的性质,把这性质叫做电阻。电阻的大小由及
温度决定。
5. 我们已经在九年级第一学期学习了电流和电压,它们和另外一个物理
量-电阻,被称为电学"三巨头",如图所示的情境形象地反映了这三巨头
之间的关系。请根据图中的信息回答:
(1) 图中甲表示,乙表示,丙表示。
(2) 由漫画的图中可知: 电阻大小与导体横截面积的关系是:
°
6. 在照明电路中,家中使用的用电器越多,总电阻就越,原因是。
7. 如图(a)所示,长度相同、粗细不同的材料相同的导体甲和乙接在电路中。则通过甲的电流(选
填"大于"、"等于"或"小于")通过
填"大于"、"等于"或"小于") 通过 乙的电流。用电压表测得甲和乙 甲 乙
两端的电压分别如图 (b) (c) 所
示,则甲两端的电压为
乙两端电压为。如把甲、乙导体并联在同一电路中,
田邑休西澧的中区 (选情"十工""炼工"或"小工") 7 邑休西澧的中区 工败中流和田邑休

支路中的电流之比为。
8. 某导体两端的电压为6伏,10秒内电流通过导体所做的功为36焦,通过该导体横截面的电荷量
为库,导体的电阻为欧。当它两端的电压为 3 伏时,其电阻为欧,电阻消耗的电功率
为瓦。
9. 在图 3 (a)、(b) 所示的电路中, $R_1: R_2: R_3$ 为 3:2:1,
电源电压相等且保持不变。当电键 S_1 ,电键 S_2 , $\begin{pmatrix} A \end{pmatrix}$ R_1 R_2 $\begin{pmatrix} A \end{pmatrix}$ R_3
(选填"闭合"或"断开")电流表 A_1 与 A_2 的示数比值最小,最 R_2 S_2
小值为。
〖电路的动态分析方法梳理〗
1. 在如图 1 所示电路中,电源电压保持不变,当滑动变阻器 R_2 的滑片 P 向左移动时,
(1) 电压表 V 与电压表 V ₂ 的示数差。
(2) 电压表 V_1 示数与电流表 A 示数的比值将。
(3) 电压表与电流表 A 示数的比值变小。电压表 V_1 示数的变 A R_1 V_2
化量与电流表 A 示数变化量的比值将,电压表 V_2 示数的变化量与
电流表 A 示数的的变化量比值将。
(4) 当滑动变阻器的滑片 P 由中点 c 向左移动时,电压表 V_2 的示数和电压
表 V_1 的示数的比值(以上均选填"变大"、"不变"或"变小")。
(5) 滑片 P 在移动过程中,电表的示数可能为零。
(6) 电表 $A \times V_1$ 的指针偏转方向,电表 $A \times V_2$ 的指针偏转方向(以上选填"相同"或
"相反")。
(7)当滑动变阻器的滑片 P 在中点 c 时,电压表 V_2 的示数为 6 伏、电流表 A 的示数为 0.6 安,当
滑片 P 在 b 端时,电流表 A 的示数0.3 安; 电压表 V_2 的示数(以上选填"大于"、"等于"
或"小于") 12 伏。
2. 在图 2 所示的电路中,电源电压保持不变。闭合电键 S ,当滑动变阻器 R_2 的滑片 P 向右移动时,
(1) 电表
(2) 电表
(3) 电压表 V 示数与电流表
表
(4) 电流表
(5) 电流表 A 示数与电流表 A_2 示数的比值将(选填"变大"、"不变"
或"变小")。
(6) 若滑片 P 由中点移到右端时,要使电流表 A 示数与电流表 A_2 示数的比值相等,应用定值电

(8)若滑片 P 移到右端时,电流表 A_2 的示数小于电流表 A 的示数的一半,则 R_1 的阻值____(选

阻 R_0 ______(选填"大"、或"小") 换电阻 R_1 。
(7) 电流表_______ 示数的变化量相等。

填"大于"、"等于"或"小于")滑动变阻器 R_2 的最大阻值。
3. 如图 3 所示的电路中,电源电压为 6 伏,电阻 R_1 、 R_2 的阻值分别为 10 欧、20
欧, 电键 S 闭合前, 电流表 A ₁ 的示数(选填"大于"、"等于"或"小于")
A_2 的示数,电压表 V 的示数为
变小,电流表 A ₁ 的示数为安。
4. 如图 4 所示的电路中,电源电压为 6 伏,电阻 R_1 、 R_2 的阻值分别为 10 欧、 S
20 欧, 电键 S 闭合时, 电压表 V 的示数为
电键 S 断开时,电压表 V 的示数为
〖电路的故障分析梳理〗
1. 在如图所示的电路中,电源电压保持不变,当电键 S 闭合后,电路正常工作。过了一段时间,电
路发生了故障(只发生在电阻 R_1 或 R_2)
(1) 两个电表示数均变小,故障是。
(2) 两个电表示数均变大,故障是。
(3) 若其中一个电表示数变大、另一个电表示数变小。故障是。 $A - \mathbf{r} $
现用一个完好的电阻 R_0 替换电阻 R_1 ,电流表 A(选填"一定"、"可能" 图 1
或"一定没")有示数。请写出替换后两电表示数变化情况及相对应的故障。
<u> </u>
(4) 若两个电表至少一个变小,则故障可能是:。
现用一个完好的电阻 R_0 替换 R_1 ,请写出替换后两电表示数变化情况及相对应的故障。
2. 在图 2 所示的电路中,闭合电键 S 后,灯 L 不发光,电压表无示数,已知电阻 R 、灯 L 中只有一
个发生故障,下列操作能判断出具体故障的是
①用完好的灯 L' 替换灯 L
②将导线接在电阻 R 两端
③在电阻 R 两端并联一个电压表
④在电路中串联一个电流表图 2
A. ①和③。 B. ①和④。 C. ②和③。 D. ③和④。
3. 在如图 3 所示的电路中, R_1 、 R_2 的阻值均为 10 欧, 电源电压为 6 伏且保持不变。电键 S 闭合时,
电压表的示数指针位置不变,电路中出现的故障只发生在电阻 R_1 或 R_2 上。
心压状的小双指扩张直升文,它如于四元的故障八次工匠心脏术[3, 12]工。
(1) 电路故障可能有。 R_1 R_2 R_2
(1) 电路故障可能有。

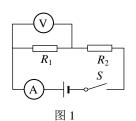
4. 如图 4 所示电路中电源电压不变,闭合开关电路正常工作。一段时间后,灯 L突然熄灭,若电路中只有一处故障,且发生在灯L或电阻R处。为查找故障, 现将与L规格相同且完好的灯L′接入电路。 (1) 若 L'与 L 并联,闭合电键,观察到 L'发光,则可确定故障为 (2) 若 L'与 R 并联,闭合电键,观察到 L'发光,请结合可能出现的其它现象分别写出对应的故障情 况 5. 图 5 所示的电路中,电源电压保持不变。开关 S 由断开到闭合,观察到电 路中两电表指针位置均不变。若电路中只有一处故障且只发生在电阻 R_1 或 R_2 处, (1)则电路中的故障可能是 (2) 现用一个完好的电阻 R_0 替换电阻 R_1 ,来进一步确定电路故障。请写出闭 合开关 S 后,两电表示数的变化情况及相对应的电路故障。 6. 如图 6 所示的电路中,电源电压为 6 伏且保持不变, R_1 、 R_2 中有一个存在 故障,闭合开关后,电压表示数为6伏,则故障可能是 (1) 若用一个完好的电阻 R 替换 R_2 , 电压表示数不变,则电路中存在的故障 图 6 (2) 若用一个完好的电阻 R 换替 R_1 ,请写出电压表示数变化情况及相对应的 7. 在如图 7 所示的电路中,电源电压不变,闭合电键,电路正常故障,过 了一会儿,电流表的示数突然变小,电路中只有 R_1 、 R_2 中存在故障, (1)则电路故障可能是 (2) 若用完好的电阻 R 替换 R_1 , 闭合电键, 发现电流表的示数再次变小, 图 3 则电路故障可能是 (3) 若用电阻 R_3 ($R_3 > R_1$) 替换 R_2 后,闭合电键 S,电流表 A 的示数不变,则故障是 8. 电阻 R_1 、 R_2 、 R_3 以不同的方式组成如图 4 (a)、 (b) 所示的电路。在两电路中, 电源、电压表、 电流表完全相同且完好, 三个电阻中至少有一个电

(2) 如果两电压表 V_1 和 V_2 均有示数且示数相等,则电路中存在的故障是

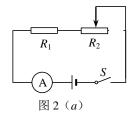
(1)如果两电流表 A_1 和 A_2 均有示数且示数相等,

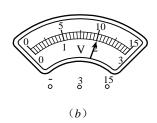
阻存在故障。闭合电键 S_1 、 S_2 :

则电路中存在的故障是

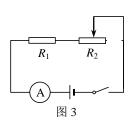

图 4 (a)

(b)

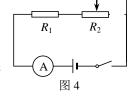

第七讲 电路计算和实验复习


[电路计算分析]

- 1. 如图 1 所示电路中,电源电压为 18 伏且保持不变,电阻 R_1 的阻值为 20 欧,所用电表是实验室里的常规电表。闭合电键 S_1 电压表示数为 10 伏。(各电表量程选择合适且保持不变)
- (1) 求电阻 R_2 的阻值。
- (2) 求 10 秒内电流通过 R_1 所做的功 W_1 。

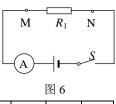


- 2. 如图 2 (a) 所示的电路中,电源电压为 16 伏保持不变,电阻 R_1 的阻值为 9 欧,滑动变阻器 R_2 的规格为"50 Ω 1A"。闭合电键 S 后,当滑片 P 在某位置时,电流表的示数为 0.6 安。求:
- (1) 电阻 R_1 两端的电压 U_1 。
- (2) 现将电压表并联在 R_1 或 R_2 两端。要求在移动变阻器滑片 P 的过程中电压表 V 的示数如图(b)所示。则电压表 V 应该并联在______两端。求此时滑动变阻器连入电路的阻值 R_2 。



- 3. 在图 3 所示电路中,电阻 R_1 的阻值为 12 欧,滑动变阻器 R_2 标有"20 Ω 1A"字样。
- (1) 当闭合电键 S 时,若电源电压为 15 伏,通过 R_1 的电流为 0.5 安。
- ①电阻 R_1 两端的电压。
- ②滑动变阻器 R_2 消耗的最小功率 P_2 。

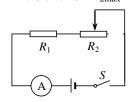
- 4. 如图 4 所示的电路中,电源电压为 15 伏且保持不变,电阻 R_1 的阻值为 15 欧,滑动变阻器 R_2 标有"50 Ω 2A"字样。闭合电键 S 后,电流表 A 的示数为 0.6 安。
- (1) 求电阻 R_1 两端的电压 U_1 。
- (2) 求电阻 R_1 消耗的最大功率 P_{1max} 。
- (3) 把上述电路元件连接成正确的并联电路后,闭合电键 S,在确保电路安全的情况下,移动滑片 P 的过程中电流表的示数可以达到 2.5 安。可判断出

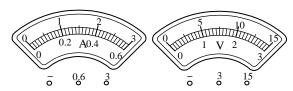


电流表测量的是______(选填" R_1 "、" R_1 "或"干路")的电流,求移动滑片 P 时电流表 A 示数的最大变化量 ΔI 。

- 5. 在如图所示的电路中,电源电压恒定不变,滑动变阻器 R_2 标有 " $\times \Omega$ 2A" 闭合电键 S。
- (1) 当 R_2 接入电路的阻值为 10 欧,电流表 A 的示数为 0.8 安,求
- ①变阻器 R_2 两端电压 U_2 。
- ② R_2 消耗的电功率 P_2 。
- (2) 在移动滑动变阻器 R_2 的滑片 P 的过程中,当电压表 V 接在_____(选填"ab"、"bc"或"ac")两端,则电流表 A 和电压表 V 对应的示数如表格所示,求 R_1 的阻值和电源电压及完成表格的填写。

滑片的位置	右端	左端	中点
电流表 A 的示数 (A)	0.4	1.2	
电压表 V 的示数 (V)	8	0	

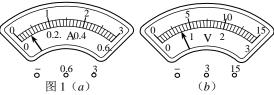

- 6. 在图 6 所示电路中, 电源电压 15 伏保持不变, 电阻 R_1 =30 欧。闭合电键后:
 - (1) 求电流表的示数。
- (2)现将标有"20 Ω 2A"的滑动变阻器 R_2 与 R_1 以某种方式接入电路 M、N 间,移动变阻器的滑片,下表记录了滑片在三处位置时电流表的示数。



- ①请判断 R2与 R1的连接方式并简述理由。
- ②表中三个电流数据中,其中有一个记录错误,请通过计算找出该数据。
- ③移动滑片 P,在电路安全的情况下,求从序号 2 到序号 3 时,变阻器 R_2 接入电路中阻值的变化量 ΔR_2 。

E 0					
序号	1	2	3		
电流(安)	0.8	1.5	2.0		

- 7. 如图 7(a) 所示的电路中,电源电压保持不变,电阻 R_1 的阻值为 10 欧,滑动变阻器 R_2 标有"2A" 字样。
 - (1) 闭合电键 S,若通过电阻 R_1 的电流为 1 安,求
 - ①求电阻 R_1 两端的电压 U_1 。
 - ②10 秒内电阻 R_1 消耗的电能 W_1 。
- (2) 若在如图所示的电路中正确连接一个电压表,闭合电键 S,移动滑动变阻器的滑片 P,发现电 流表 A 的示数范围为 $0.9\sim1.2$ A。若将 R_1 和 R_2 并联接入同一电源,在电路中正确连接一个电流表 A,发现电流表 A 的示数范围为 $1.8\sim3$ A。电流表、电压表的表盘如图(b)所示。求电源电压 U 和 滑动变阻器的最大阻值 Romax 。



『电路实验分析》

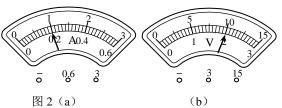
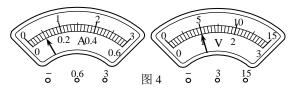

- 1. 小华同学做"测定小灯泡的电功率"实验,所用器材齐全且完好,电源电压为 1.5 伏的整数倍且保 持不变、待测小灯上标有"0.2A"字样、滑动变阻器上标有"50Ω 1A"字样。实验中, 小华正确连接电 路且使变阻器连入电路中的电阻最大,闭合电键时,小灯不发光、电表指针所处位置如图 1(a)、(b) 所示。(电流表指针在两刻度线之间某位置,电压表指针在刻度线上)
- (1) 判断电流表所选量程并说明理由。
- (2) 通过计算说明实验所用电源的电压。
- (3)小华移动变阻器的滑片,直至小灯正常发光, 发现无法读出小灯的额定电压。然后他调整了电表 接入位置后重新实验, 当小灯正常发光时, 电压表

图 1 (a)

指针所处位置与图 (b) 相同。请通过计算求出小灯的额定功率。

- 2. 小华同学做"测定小灯泡的电功率"实验,现有电源(电压保持不变)、待测小灯(标有"2.5V"、"3.8V"字样的小灯各一个)、滑动变阻器(标有"10 Ω 1A"、"50 Ω 1A"的变阻器各一个)、电压表、电流表、电键及导线若干。小华同学选择了一个小灯和变阻器后正确连接电路,实验步骤正确,刚闭合电键时电流表、电压表示数如图 2 (a)、(b) 所示。接着他把另一个电压表并联在电路中的某两点之间,按照正确实验步骤进行操作,刚闭合电键时此电压表示数恰好仍如图 (b) 所示。他继续移动滑动变阻器的滑片 P 直至小灯正常发光时,发现电流表和其中一个电压表示数都在原来的基础上偏转了 1 格,另一个电压表示数在原来的基础上偏转了 5 格。
- (1) 小华所选的变阻器规格为____。
- (2) 小华所选用小灯的额定电压为_____
- (3) 计算小灯的额定功率。



3. 小华同学做"测定小灯泡的电功率"实验,实验器材齐全并完好,电源电压 6 伏不变,滑动变阻器 有 A、B 两个(A 标有" 10Ω 1A"字样、B 标有" 20Ω 1A"字样),待测小灯上标有"2.5V"字样清晰可

见。小华选用其中一个滑动变阻器与电源、小灯泡、电流表、电键正确连接电路后,再将电压表并联在电路中。闭合电键前使滑动变阻器接入电路电阻最大,然后闭合电键,通过移动变阻器的滑片测得小灯在不同电压下的电流,并将数据记录在下表中。

物理量	电压 (伏)	电流 (安)
1	4.0	0.20
2	3.5	0.22
3	2.5	0.28

- (1) 请画出小华同学的实验电路图。
- (2) 判断小灯泡正常发光的方法是:
- (3) 小华在实验中选用的滑动变阻器是 (选填"A"或"B")。
- (4) 小灯泡的额定功率为 瓦。(请写出计算过程)
- 4. 小华同学做"用电流表、电压表测电阻"的实验,实验器材齐全且完好,电源电压保持不变。
- (1) 小华正确串联实验器材,并将滑片放置于变阻器的一端,然后将电压表并联在电路中。闭合电键后,两电表的示数如图 4 所示。接着移动变阻器的滑片,观察到电压表的示数逐渐变小,直至为零,

则他在连接电路时存在的问题是

- (2) 经过思考,小华重新实验,他正确连接电路,操作步骤正确,闭合电键后,发现两电表指针所指的刻度与图所示一致。在小华同学前两次的实验中,表的示数一定没有发生变化。

第九讲 光专题复习

【知识点梳理】

(一) 光的反射

光的反射定律:光发生反射时,反射光线、入射光线与法线在同一平面内;反射光线和入射光线分别位于法线的两侧;反射角等于入射角。

(二) 平面镜成像

平面镜成像特点: 平面镜所成像是虚像; 像和物体到平面镜的距离相等; 像和物体的大小相等。像 和物体对平面镜来说是对称的。

(三) 光的折射

规律:光发生折射时,折射光线、入射光线、法线在同一平面内;折射光线、入射光线位于法线两侧;当光从空气斜射入水或其他透明介质中时,折射光线向法线偏折,减小入射角,折射角也随之减小;反之,增大入射角,折射角也随之增大。当光垂直于界面射入时,折射光线不发生偏折。

(四) 光的色散

在不同色光中, 红、绿、蓝叫做三原色光。

(五) 凸透镜成像规律及应用

物距 u		像的性质	像的位置	应用	
初起 #	正立或倒立	放大或缩小	实像或虚像	(像距 v)	巡用
u>2f	倒立	缩小	实像	f <v<2f< td=""><td>照相机</td></v<2f<>	照相机
f <u<2f< td=""><td>倒立</td><td>放大</td><td>实像</td><td>v>2f</td><td>幻灯机</td></u<2f<>	倒立	放大	实像	v>2f	幻灯机
$u \le f$	正立	放大	虚像		放大镜

f <u<2f< th=""><th>1到立.</th><th>放入</th><th>头像</th><th>v > 2f</th><th>ZJ%J 1/VL</th></u<2f<>	1到立.	放入	头 像	v > 2f	ZJ%J 1/VL
$u \le f$	正立	放大	虚像		放大镜
【基础训练	1				
1: 下列光学器具	具中,根据光的反	射定律制成的是		()
①放大镜 ②穿	衣镜 ③潜望镜	④近视眼镜			
A.①与②	B.②与③	C.(1)与③ D	.②与④	
2: 入射光线与原	反射光线间的夹角	为 60°,则此时	光线的方向改变	了	()
A.30°	$\mathrm{B.60}^{\circ}$	•	C.120°	$D.150^{\circ}$	
3: 如图所示,	在"探究平面镜质	戈像的特点"实	<i>B</i> ()		A
验中,选用的器	材有玻璃板、两支	反完全相同的蜡		$\overline{}$	
烛等器材,用玻	斑璃板来代替	的目的是可	V ^A A U		
以确定像的	,在玻璃板前	前放置一支点燃		7	B
的蜡烛 A ,拿一	支未点燃的蜡烛 E	8 在玻璃板后面			1
移动,直到蜡烛	B 好像被点燃似	的,这样可以比较	交像与物的	_。若移去蜡烛 <i>B</i>	,在其位置放置
一光屏,在光屏	上不能观察到像。	,由此可以说明_		0	

4: 根据平面镜成像特点,在图中画出物体 AB 在平面镜中所成的像 A'B'。

5:在"探究平面镜成像的特点"实验中,小张设计的实验报告(部分)如下,请填写空格处的内容。

萝	% 	究平面镜成像的特点 离板、两支 在水平桌上铺一张的 板作为平面镜。 在玻璃板前放一支。 在玻璃板前放一支。 面到它与镜中的像等	的蜡烛、刻度尺 3纸,纸上 点燃的蜡烛 A,5 (选填"A"	放一块玻璃 如图12 、"B"),	图12	
6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	左亚西德	当他向平面镜走近时	+			
	. , , , ,	当他内下画規定だり 是 ()	·J ,			
		变小	D 梅亦小 梅上	二人的职家亦士		
		文介 的距离不变			可亦小	
		和平面镜相距 1.5 划				(法
		平面镜 米,				
		,平面镜向小王靠;				-><
	; 石尔亚尔纳 è中,属于光的		7. 0.3 \k') \k'\1.7	- H J 18N 1夕 4y J	/K。	
	照射下树木出	,			,	
, , .,, =-	中看见自己的					
		水面上看,水下部分	分向上弯折了			
	- 时次了, <i>//</i> // 面映出岸上的		11.177.211.1			
	. , , , , , , , , , , , , , , , , , , ,	√./2 ₹时,下列结论中正	确的是		()	
7.		(e1) 1 / 1/1/11 to 1 III		入射角	,	
C. 折射角等			D. 以上都有可			
		中,若入射角为 45			()	
A. 0°		. 32°	C. 45°			
		· ° - 规律"实验中,凸透镜				≢凸
		的中心大致在				
		上烛焰像应该是		1	1 113/VIII3/ZI/ZI/ZI/ZI	2,
		、")。若将蜡烛向d		A		
厘米,则移	动光屏再次在	生光屏上成的烛焰	像将		_\$_\$_	_
		"或"变小")。			րոդուդինիկարարարնինարարա յ 40 50 60 70 80	
		A 的焦距为 20 厘米	、物距为	A	(题 11 图)	

厘米,光屏中心呈现清晰的烛焰像,该实验现象可以说明 的成像特点(选填"照相机"、 "幻灯机"或"放大镜")。若用凸透镜 B 替换凸透镜 A 继续实验,如图(b)所示,光屏上呈现 清晰的像,像距为______厘米,透镜 B 的焦距______透镜 A 的焦距(选填"大于"或"小于")。 10 20 30 40 50 60 70 80 90 cm 0 10 20 30 40 50 60 70 80 90 cm (题 12 图) (a) (b) 13: 如图所示, 凸透镜的焦距为 10 厘米。实验时应先调整光屏的 以保证烛焰的像能成在光屏的 ; 若保持图中透镜的位置不变, 将蜡烛移至光具座的"20厘米"刻度处,则应在厘米刻度 40 50 60 70 范围内移动光屏寻找像(选填"60~70"或"大于70"),直到光屏 上的像最 为止。 14: 凸透镜的焦距为 15 厘米,将物体放在主光轴上距离焦点 5 厘米处,则所成的像一定是() A.正立的 B.倒立的 C.放大的 D.虚像 15:用镜头焦距不变的照相机,给某人照了一张全身像,再要拍一张半身像,应该使() A.照相机与人的距离增大,暗箱长度缩短 B.照相机与人的距离增大,暗箱长度伸长 C.照相机与人的距离减小,暗箱长度缩短 D.照相机与人的距离减小,暗箱长度伸长 16:在"探究凸透镜成像的 实验目的:验证凸透镜成像规律。 规律"的实验中,小明设 __: 凸透镜、光屏、____、蜡烛和火柴等。 计的实验报告(部分)如 实验步骤: 1. 记录凸透镜的 2. 安装和调试实验装置时,应使凸透镜和光屏的中心跟 下,请填写空格处的内容。 烛焰的中心大致在_ 3. 固定凸透镜的位置,将蜡烛放在适当的位置后,移动 _找像, 在移动过程中, 眼睛要注意规察光屏 上的像直到清晰为止。 测量并记录此时的物距和像距。 17: 关于实像,下列说法中正确的是 () A. 眼睛能看见的是实像 B. 凸透镜成的像是实像 C. 能在光屏上得到的像是实像 D. 与物体一样大小的像是实像 18: 某凸透镜的焦距为 10 厘米。当物体沿主光轴从距透镜 30 厘米处向 15 厘米处移动时,则 () A. 像变大, 像距变大 B. 像变小, 像距变小 C. 像先变小后变大, 像距变大 D. 像先变小后变大, 像距变小 19: 物体放在凸透镜前某一位置时,在透镜另一侧离透镜 10 厘米的光屏上成一个倒立缩小的像。当 物体移至凸透镜前 10 厘米处, 所成的是

Α.	倒	立缩	小	的	实位	옗

B. 倒立放大的实像

C. 正立放大的虚像

D. 正立等大的虚像

20: 物体放在凸透镜前 12 厘米处,在透镜另一侧的光屏上成一个倒立放大的像。当物体距凸透镜 8 () 厘米时, 所成的像

A. 一定是倒立放大的实像

B. 可能是倒立缩小的实像

C. 可能是正立放大的虚像

D. 可能是正立等大的虚像

21: 在各种色光中,被称为三原色光的是

()

A.红、绿、蓝 B.红、黄、蓝 C.红、黄、绿 D.黄、绿、蓝

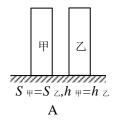
【提高训练】

某小组同学在做"探究凸透镜成像的规律"实验的过程中发现: 当发光物体与光屏之间的距离 L 确定 时,将凸透镜从发光物体处缓慢向光屏移动的过程中,有时能在光屏上成两次清晰的像,有时只能 成一次清晰的像,有时不能在光屏上成像。为了研究产生这些现象的条件,该小组同学进行实验, 并将每次实验中的相关数据及现象记录在下表中。

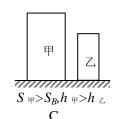
凸透镜	rå+ #A	物屏	3	第一次成像		3	第二次成像	
白透镜 焦距f	实验 序号	距离 L (厘米)	物距 u (厘米)	像距ャ (厘米)	像的 大小	物距 u (厘米)	像距 v (厘米)	像的 大小
	1	49	14	35	放大	35	14	缩小
10 E W	2	45	15	30	放大	30	15	缩小
10 厘米 3 40	40	20	20	等大	不能在分	光屏上第二	次成像	
	4	35	不能在光屏上成像					1
	5	80	20	60	放大	60	20	缩小
4 = 1000 AM	6	64	24	40	放大	40	24	缩小
15 厘米 7 60	60	30	30	等大	不能在	光屏上第二	次成像	
	8	55	不能在光屏上成像					

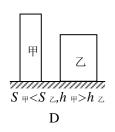
(1)分析比较实验序号 1、2 与 3(或 5、6 与 7)的第	一次成像数据中像距 v 物距 u 的变化关系及相关条
件,可得出的结论:	;
(2)分析比较实验序号1(或2、或5、或6)的第一和	第二次成像数据中物距与像距的关系及相关条件,
可得出的结论:同一凸透镜,当	一定,移动凸透镜能在光屏上成两次像时,
	;
(3)继续分析比较表格是物屏距离 L 与凸透镜焦	距 f 的数据及观察到的现象,可得出的结论:在
条件下,	移动凸透镜,可以在光屏上得到一次放大的像和一
次缩小的像。	

第十讲 压强专题复习(1)

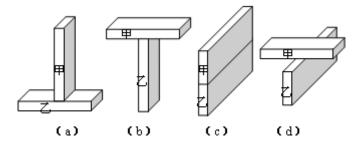

【知识点梳理】

- 1. 公式: $p = \frac{F}{S}$ 柱体: $p = \rho gh$
- 2. 压强变化量: $\Delta p = \frac{\Delta F}{S}$ 水平切割柱体: $\Delta p = \rho g \Delta h$
- 3. 竖直切割柱体压强不变


【基础训练】


- 1: 三个实心正方体对水平地面的压强相等,现将它们沿竖直方向切去厚度相等的部分,剩余部 分对水平地面的压力大小关系是 $F_1 < F_2 < F_3$,则它们的密度的大小关系是(
- A. $\rho_1 < \rho_2 < \rho_3$ B. $\rho_1 > \rho_2 > \rho_3$ C. $\rho_1 = \rho_2 = \rho_3$ D. $\rho_1 = \rho_2 > \rho_3$
- 2: 如图所示,甲、乙两个圆柱体($\rho_{\parallel}>\rho_{\perp}$)分别放置水平面上,它们的底面积分别为 S_{\parallel} 和 S_{\parallel} z, 高度分别为 h = 和 h z。若在两圆柱体上放置相等的质量物体,使两个圆柱体对水平面的压强相等,

则甲、乙两个圆柱体放置情况可能的是



S = S A,h

- 3: 水平面上有两个完全相同的长方体甲、乙,按图(a)、(b)、(c)、(d) 所示的四种样式将甲叠 放在乙上。其中, 甲对乙的压强大小相等的样式是
- A (a) 与(b)。
- B (a) 与(b) 与(c)。
- C (a) 与(b) 与(d)。
- D (a) 与(b) 与(c) 与(d)。

- 4: 甲、乙两个实心正方体分别放在水平地面上,它们对水平地面的压强相等,且 $\rho => \rho$ z。若在它 们上部沿水平方向分别切去相同体积,则它们对地面压强变化量 Δp_{\parallel} 、 Δp_{\perp} 的大小关系 ()
- A. $\Delta p \neq \Delta p$
- B. $\Delta p = \Delta p z$
- C. $\Delta p \neq \Delta p$
- D. 都有可能

5: 如图所示,A、B 两长方体置于水平地面上(已知 $m_A < m_B$ 、 $S_A > S_B$ 、 $h_A = h_B$)。将两物体水平截去相同高度,剩余部分对地面的压强 p_A 、 p_B 和压力 F_A 、 F_B 的关系为(

A. $p_A < p_B$, $F_A = F_B$

B. $p_A < p_B$, $F_A < F_B$

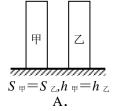
C. $p_A > p_B$, $F_A = F_B$

D. $p_A > p_B$, $F_A > F_B$

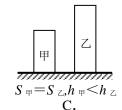
6: 如图所示, 甲、乙两个质量相等的均匀实心正方体放在水平地面上,

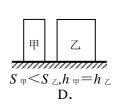
已知铜的密度大于铁的密度,可能使甲和乙对地面的压强相等的方法是()

- A. 将质量相等的铜块和铁块分别放在甲、乙的上面
- B. 将体积相等的铜块和铁块分别放在甲、乙的上面
- C. 沿水平方向截去质量相等的部分
- D. 沿水平方向截去体积相等的部分
- 7: 如图所示,质量相同的实心均匀正方体甲、乙分别放置在水平地面上。 若沿水平方向切去某一厚度,使甲、乙对地面的压力相同,则此时它们 对地面的压强 $p_{\#}$ 、 p_{Z} 和切去的厚度 $h_{\#}$ 、 h_{Z} 的关系是 ()


Z

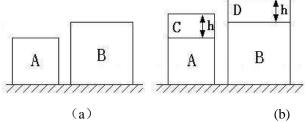
A $p \neq p \geq p \leq h \neq h \leq a$


B $p \neq p \leq p \leq h \leq n$


C $p \neq \langle p \rangle$, $h \neq h \rangle$.

- D $p \neq , <math>h \neq < h \subset$.
- 8: 甲、乙两个圆柱体($\rho_{\parallel} < \rho_{\perp}$)分别置于水平地面上,它们的底面积分别为 S_{\parallel} 和 S_{\perp} ,高度分别为 h_{\parallel} 和 h_{\perp} 。若均沿水平方向,将两圆柱体截去相等的质量,使剩余部分对地面的压强 $p_{\parallel} > p_{\perp}$,则甲、乙两个圆柱体被截去前的情况可能是图中的

- 9: 图所示的圆柱体甲和乙分别放在水平地面上,已知 $m_{\parallel}=m_{\text{Z}}$, $\rho_{\parallel}>\rho_{\text{Z}}$ 。现准备分别在它们上部沿水平方向截去部分物体后,再叠放在对方剩余部分上表面。以下截法中,有可能使它们对水平地面的压强相等的方法是()
- A. 水平截去相同的高度。
- B. 水平截去相同的体积。
- C. 水平截去相同的质量。
- D. 按原来高度的比例, 水平截去相等比例的部分高度。



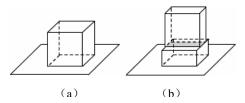
10: 甲、乙两个实心立方体分别放在水平地面上($\rho_{\parallel} < \rho_{Z}$),它们对水平地面的压强相等。若沿竖直方向将甲、乙两个立方体各切除一部分,且使甲、乙两个立方体剩余部分的厚度相同,再将切除部分分别叠放在各自剩余部分上面,则水平地面受到甲、乙的压强(

A $p \neq p \neq p \neq D$ B $p \neq p \neq p \neq D$ C $p \neq p \neq D$ 以上情况均有可能

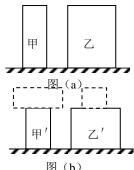
- 11: 如图(a)所示,实心正方体 A、B 放置在水平地面上,受到的重力分别为 20 牛和 60 牛,A 的边长为 0.2 米,B 的边长为 0.3 米。
- ① 求正方体 A 对水平地面的压力 F_A 。
- ② 求正方体 B 对水平地面的压强 p_{B} 。
- ③ 若在正方体 A、B 上分别放置与 A、B 底面积相等、材料相同的的长方体物块 C,和物块 D,如 B(b)所示,如果它们的高度 h 相等,正方体 A 和 B 对水平地面的压强分别为 p_A 和 p_B 。请通过计算比较它们的大小关系及其对应的 h 的取值

范围。

【提高训练】


- 1: 甲、乙两个均质正方体分别放置在水平地面上,甲的质量为 6 千克,边长为 0.1 米,乙的密度为 4×10^3 千克/米 3 ,边长为 0.2 米。求:
- (1) 正方体甲的密度 ρ 。
- (2) 正方体乙对水平地面的压强p。
- (3)如果沿竖直方向在两正方体上分别截去宽度为L的部分并

分别放在各自剩余部分上方,示意图如所示。请判断这种方法能否使它们对水平地面的压强相同,若不行请说明理由;若行,请计算截去部分的宽度 L。


- 2: 如图所示,实心均匀正方体 A、B 放置在水平地面上,它们的高度分别为 0.2 米和 0.1 米,A 的密度为 2×10^3 千克/米 3 ,B 质量为 1 千克。求:
- (1) A 的质量;
- (2) B 对水平地面的压强;
- (3) 若在正方体 $A \times B$ 上沿竖直方向按相同比例 n 截下一部分,并将截

下的部分分别叠放在对方剩余部分上,这时 A、B 剩余部分对水平地面的压强为 p_{A}' 、 p_{B}' ,请通过计算比较它们的大小关系及其对应的比例 n 的取值范围。

- 3: 在图 (a) 中, 边长为 0.1 米、密度为 0.5×10³ 千克/米 ³ 的实心正方体静止在水平面上。
- ①求正方体的质量。
- ②求正方体对水平面的压强。
- ③现设想把该正方体截取一半,并将截取部分叠放在剩余部分上方的中央,使截取部分对剩余部分的压强与叠放后水平面受到的压强相等。

- I 小华想沿竖直方向截取一半,他 (1) 满足上述要求(选填"能"或"不能")。
- Ⅱ 小明沿水平方向截取一半,并按图(b)所示方法放置,满足了上述要求,请说明理由。
- 4: 如 (a) 所示,放在水平面上的实心圆柱体甲、乙由同种材料制成,密度为 5×10^3 千克 / 米 3 。甲、乙的高度均为 0.1 米。甲的质量为 5 千克,乙的质量 为 15 千克。

- ① 求: 甲的体积 V_甲。
- ② 求: 甲对水平面的压力 $F_{\mathbb{P}}$ 。
- ③ 如图 13 (b) 所示,若在甲、乙上沿水平方向截去某一相同的厚度,并将 图 (b) 所截去的部分均叠放至对方剩余部分上表面的中央。当截去厚度 h 时,恰能使叠放后的物体甲'、乙'对地面的压力相等,
- (b) 此时物体甲'、乙' 对地面的压强分别为 p_{\P}' 、 p_{Z}' ,则

p _₹': *p* _Z'=____。(本空格不需要写解答过程)

第十一讲 压强专题复习(2)

【知识点梳理】

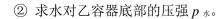
如图:质量为 m_z 的液体乙装在底面积为S、质量为 $m_{\mathfrak{F}}$ 的柱形容器中,液体高h,则

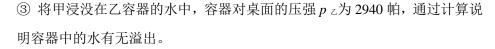
液体对容器底的压强可表示为: ______

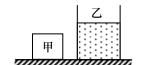
容器对地面的压强可表示为:

若将质量为 m #体积为 V #的物块甲全部浸没在乙液体中(无液体溢出)则此时

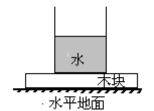
液体对容器底的压强可表示为:


容器对地面的压强可表示为: ______


容器对地面的压强变化量可表示为:______


【基础训练】

- 1: 如图所示,圆柱体甲和轻质薄壁圆柱形容器乙置于水平地面。甲的质量为
- 4 千克, 乙容器的底面积为 2×10^{-2} 米 2 , 内有 0.2 米深的水。



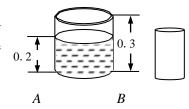
- 2: 如图所示,放置在水平桌面上的两个圆柱形容器,甲容器底面积为 3×10⁻² 米 ²,容器内放了正方 体物块 A; 乙容器底面积为 2×10^2 米 2 ,容器内装有深度为 0.2 米的水。求:
- ① 乙容器中水的质量 m *。
- ② 水对乙容器底的压强 p_{*} 。
- ③ 现将某种液体倒入甲容器中,并使物块 A 正好浸没,

此时液体对容器甲的压强为p液。再将物块取出浸没在乙容器的

水中,水面上升至 0.25 米(水未溢出)。 $p_{\%}$ 恰好是水对容器乙压强变化量 $\Delta p_{\%}$ 的 1.5 倍,求: 液体 密度 ρ 液。

- 3: 如图所示,底面积为 2×10^{-2} 米 2 的正方形木块放置在水平地面上,现将盛有体积为 4×10^{-3} 米 3 水 的轻质薄壁圆柱形容器放在木块的中央,已知圆柱形容器的底面积为 1×10^{-2} 米 2 。求:
- (1) 容器内水的质量 m *。
- (2) 容器对木块的压强 p 容。
- (3) 现有一实心小球浸没在该圆柱形容器内的水中(容器足够高),此时水对容器底部压强的增加量为 Δp_* ,木块对地面压强的增加量为 Δp_* ,若 Δp_* : Δp_* =5:3,求小球的密度 ρ_* 。

- 4: 完全相同的两个柱形容器放在水平地面上,两容器内分别盛有水和某种液体。
- ①若容器和水的总重为 20 牛,容器的底面积为 2×10^{-2} 米 2 ,求容器对地面的压强 p_{\Re} 。
- ②若容器内盛有 0.3 米深的水,求水对容器底部的压强 p_* 。
- ③若将两个完全相同的实心金属小球分别浸没在水和液体中(水和液体均不溢出),下表为放入小球前后两容器底部受到液体的压强。


求这种液体的密度 ρ 液。

容器底部受到	放入小球前	放入小球后	
液体的压强	从八小环间		
p 水(帕)	1960	2940	
p 液(帕)	2068	2852	

- 5: 将底面积为 2×10⁻² 米 ²、盛有深度为 0.3 米水的薄壁轻质圆柱形容器放置在水平地面上。求:
- ①水的质量 m 水。
- ②水对容器底部的压强 p_{*} 。
- ③现将一体积为 1×10⁻³ 米 ³ 实心均匀小球直接放入该容器后,小球浸没并静止在容器底,分别测得 小球放入前后容器对水平地面的压强变化量 Δp *及水对容器 底部的压强变化量 $\Delta p_{,*}$, 如右表所示, 计算小球的密度。

Δp ^容 (帕)	Δp * (帕)
980	0

- 6: 如图所示, 高为 0.3 米、底面积为 0.02 米 ² 的薄壁圆柱形容器 A 置于水平地面上,容器内装有重为 39.2 牛、深度为 0.2 米的水。
- (1) 求水对容器底的压强 p *。
- (2) 若容器重为 10 牛, 求容器对水平地面的压强 p %。
- (3) 现将底面积为 0.01 米 ²的实心圆柱体 B 竖直放入容器 A 中, 水 恰好不溢出,此时容器 A 对地面的压强增加量 Δp *恰好等于水对容器 底的压强增加量 Δp_{*} ,求圆柱体 B 的质量 m。

第十二讲 电路专题复习(动态和故障)

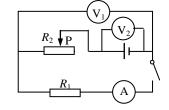
【知识点梳理】

串联电路动态分析: ①R # ②I ③U £ (U £=R £I) ④U # (U #=U-U £)

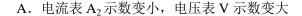
并联电路动态分析: ①R # ②I # ③I #

【基础训练】

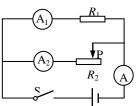
1: 在如图所示的电路中,电源电压保持不变。闭合开关 S,当滑动变阻器滑片 P 向右移动时,数值不变的有①电流表 A 的示数;②电压表 V_1 的示数;③电压表 V_2 的示数;④电压表 V_1 的示数与电流

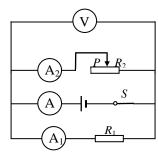

表 A 的示数的比值。以上四项判断正确的有 ()

B. 2个


C. 3个

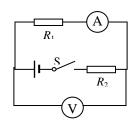
D. 4个



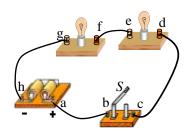

- 2: 在如图所示的电路中,电源电压保持不变。闭合开关 S 后,当滑动变阻器 R_2 的滑片 P 由中点向右端移动时,变大的是 ()
- A. 电流表 A 的示数
- B. 电流表 A₁的示数
- C. 电压表 V 示数与电流表 A 示数的比值
- D. 电压表 V 示数与电流表 A₁ 示数的比值
- 3: 在如图所示的电路中,电源电压保持不变。闭合开关 S,向右移动滑动变阻器滑片 P 的过程中()
- A. 电流表 A₁的示数变小
- B. 总电阻 R 点的阻值变小
- C. 电流表 A2示数与电流表 A示数的比值变小
- D. 电流表 A_1 示数与电流表 A_2 示数的比值变小
- 4: 在如图所示的电路中,电源电压保持不变。闭合开关 S,向左移动滑动变阻器滑片 P 的过程中,

正确的判断是 ()

- B. 电流表 A 示数与电流表 A₁ 示数的差值不变
- C. 电压表 V 示数与电流表 A 示数的比值变小
- D. 电流表 A 示数变化量与电流表 A2 示数变化量的比值不变


5: 在如图	所示的电路中	中,电源电压保持不	「变	E。开关 S 由断开到闭合,	关于	电压表 V_1 与电压表 V_2
示数的变体	化情况判断正	确的是 ()			Г	
A. V ₁ 表	的示数变大,	V_2 表的示数变大			-	
B. V ₁ 表	的示数变小,	V_2 表的示数变大				$\begin{pmatrix} V_1 \end{pmatrix}$ $\begin{pmatrix} R_1 \\ A \end{pmatrix}$
C. V ₁ 表	的示数变小,	V_2 表的示数变小				R ₂ S
D. V ₁ 表	的示数变大,	V_2 表的示数变小				
6: 在如图	听示的电路中	,电源电压保持不	变。	当开关 S 由闭合到断开时	,电路	中电压表 ()
A. V ₁ 的	示数变大,V	2的示数变小				(V)
B. V ₁ 的	示数变小,V	2的示数变大				R_2
$C. V_1$ 的	示数变大,V	2的示数变大				R_1 S V_2
D. V ₁ 的	示数变小,V	72的示数变小				
7: 在如图	所示的电路中	中,电源电压为4亿	た。	现有如下两种操作:		P
①将滑动空	变阻器滑片向	右移;②用6伏的	电	源替换原来的电源。		R_1 R_2
其中可以位	$ $	F 数与 V_2 示数的比	值	变大的操作有()	V_1 V_2 S
A ①②都	不行		В	①②都可行		
C 只有①	可行		D	只有②可行		
8: 在如图	所示的电路中	中,电源电压保持不	交	E。闭合开关 S,电压表示	数为 U	J, 一段时间后发现只有
一个电表的	的示数变大,	已知电阻 R_1 、 R_2 中	仅	有一个出现了故障。		$\overline{(v)}$
(1) 故障	情况是			o		R ₂ S
(2) 若将	电阻 R_1 和 R_2	的位置互换,则示	数	一定不发生变化的是		R_1
	表。(选填"A"、"V"或"A	A 禾	□ V")		——A)
(3) 若此	时电压表示数	数为 $3U$,则 R_1 与 R	2 台	勺比值为。		
9: 在如图	所示的电路中	中,电源电压保持不	变	。开关 S 从断开到闭合,	_	R_1 R_2 S
电压表的表	示数不变,若	电阻 R_1 、 R_2 中仅有	j-	一个出现故障,请根据相关	$\begin{pmatrix} A \end{pmatrix}$	
信息写出日	电流表示数的	变化情况及相对应	的i	故障。	Ί	
				o		
10: 在如图	图所示的电路	中,电源电压保持	不	变。闭合开关 S,灯 L 亮,	-	$R \qquad \stackrel{\mathbf{L}}{\overset{}}{\overset{}{\overset{}{\overset{}{\overset{}{\overset{}}{\overset{}{\overset{}}{\overset{}{\overset{}{\overset{}{\overset{}{\overset{}}{\overset{}{\overset{}}{\overset{}{\overset{}}{\overset{}{\overset{}}{\overset{}{\overset{}}{\overset{}{\overset{}}{\overset{}{\overset{}}{\overset{}{\overset{}}{\overset{}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}{\overset{}}{\overset{}}}{\overset{}{\overset{}}{\overset{}}{\overset{}}{\overset{}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}{\overset{}}}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{.}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}}}{\overset{}}{\overset{}}}{\overset{}}}$
段时间后,	灯L熄灭。若	自路中只有一处故	[障	,且发生在灯 L 或电阻 R	Ŀ.	
现用一只知	完好的灯 L'替	换灯 L, 并根据观	察:	到的现象判断故障。请写 🛭	出相	

关的判断依据及对应的故障。_____。


11: 在如图所示的电路中,电源电压为 U 保持不变,电阻 R_1 、 R_2 阻值均为 R_0 。闭合开关 S ,电压表
示数无变化。已知电路中只有一处故障,且发生在电阻 R_1 或 R_2 上。
(1) 该故障一定不是。
(2)为进一步确定故障,再将一只完好的电流表正确串联接入电路, (A)
闭合开关 S, 观察现象进行判断。请根据相关信息,写出
两电表的示数及相对应的故障。
12: 在如图所示的电路中, 电源电压保持不变。闭合开关 S, 电路正常工作。
一段时间后,两电表同时发生同向偏转,已知电路中仅有一处故障,且只
发生在电阻 R 或小灯 L 上。请根据相关信息写出电表示数的变化情况及相 S R R
对应的故障。
°
13: 在如图所示的电路中,电源电压为 U 。现已知电路中只有电阻 R 发生
了故障。
(1) 请判断: 当开关 S 断开时电压表 V ₂ 的示数为。
(2)请写出: 当开关 S 闭合后两电压表的示数及相对应的
故障。。
14 : 在如图所示的电路中,电源电压保持不变,电阻 R_1 或 R_2 可能存在故障。
(1) 当开关 S 闭合时,观察到电压表示数,说明电路
中没有故障。
(2)如果观察到开关 S 闭合前后只有一个电表的示数发生改变,请指出示
数发生变化的电表及对应的故障。。
15: 在如图所示的电路中,电源电压为 U 且保持不变,电路中仅有一处故障, V
且只发生在电阻 R 或灯 L 上。若灯 L 发生了短路,则闭合开关后电流表 A 的 $\begin{vmatrix} R \end{vmatrix}$ $\begin{vmatrix} R \end{vmatrix}$ $\begin{vmatrix} R \end{vmatrix}$
示数为(选填"等于0"或"大于0"),电压表V的示数为(选填"0"
或" U ")。若开关闭合前后,两电表的示数都不发生变化,请写出两电表的示数
及相应的故障。

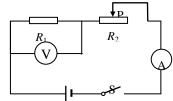
【提高训练】

- 1: 在如图所示的电路中,电源电压保持不变,两个电阻的阻值 $R_1 < R_2$ 。闭合开关 S,电路正常工作。下列可使电路中一个电表的示数变大,另一个电表的示数变小的操作是将 ()
- A. 电阻 R_1 与 R_2 的位置互换
- B. 电阻 R_1 与电压表 V 的位置互换
- C. 电阻 R_2 与电流表 A 的位置互换
- D. 电压表 V 与电流表 A 的位置互换

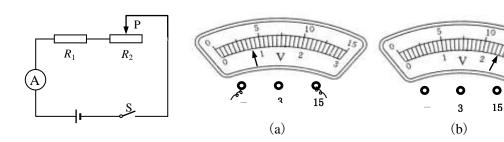
- 2: 如:所示电路,闭合电键 S,两只小灯不亮。小蒋查看了电源、电灯、电键和接线柱连接都没问题,估计是某导线断路了。小蒋将电表的正接线柱与电源的正极 a 相连,再将电表的负接线柱分别与其它接线柱相连。下列有关检测的推断正确的是 ()
- A 若电流表接在 ad 两端时,灯亮,则导线 cd 一定断路。
- B 若电流表接在 ae 两端时, 灯亮, 则导线 ab 一定断路。
- C 若电压表接在 af 两端时,示数为 3V,则导线 gh 一定断路。
- D 若电压表接在 ag 两端时,示数为 0V,则导线 gh 一定断路。

第十三讲 电路专题复习(计算)

【知识点梳理】


电路计算公式: I=U/R W=UIt P=UI

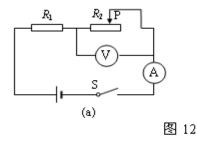
串联: $I=I_1=I_2$ $U=U_1+U_2$ $R=R_1+R_2$ $U_1/U_2=R_1/R_2$

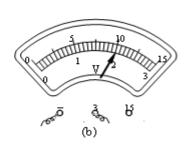

并联: $I=I_1+I_2$ $U=U_1=U_2$ $1/R=1/R_1+1/R_2$ $I_1/I_2=R_2/R_1$

【基础训练】

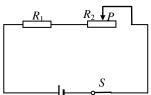

- 1: 如图所示的电路中,电源保持不变,电阻 R_1 的阻值为 10 欧,闭合电键 S,电压表的示数为 3 伏。 求:
- ①通过电阻 R_1 的电流 I_1 。
- ②现改变变阻器 R_2 滑片 P的位置,当电阻 R_1 两端的电压分别为 2 伏、 4 伏时,变阻器 R_2 的电功率相同。求电源电压 U 及变阻器接入电路的电阻值 R_2 。

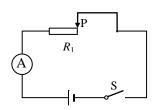
- 2: 如图所示电路中,滑动变阻器 R_2 是规格为"10 欧 2 安"和"20 欧 2 安"中的一个。若在电路中并联一个电压表,闭合电键 S,当滑动变阻器滑片位于中点时,电流表的示数为 0.8 安,电压表的示数如图 (a) 所示,继续移动滑片 P 到达某一端点,电压表示数如图 12 (b) 所示。
- (2) 求:电阻 R_1 的阻值及电源电压 U。
- (3) 在电路各元件都正常工作的情况下,求:电阻 R_1 消耗电功率的最大值 $P_{1\,\text{lk}}$ 。


- 3: 在图所示的电路中,电源电压恒定不变, R_1 的阻值为 10 欧。闭合电键 S,电流表的示数为 0.4 安、电压表的示数为 6 伏。
- (1) 求电源电压 U。
- (2) 求电阻 R_2 的阻值。
- (3) 现用 R_0 替换电阻 R_1 、 R_2 中的一个,使图中的电压表的示数变为 2 伏。求电阻 R_0 消耗的电功率 P_0 。



- 4: 在图所示的电路中,电源电压为 9 伏保持不变,电阻 R_1 的阻值为 10 欧. 闭合电键 S 后,电流表 A 的示数为 0.5 安培.
- (1) 求电阻 R_1 两端的电压 U_1 ;
- (2) 求电阻 R₂的阻值;
- (3) 现用电阻 R_0 替换电阻 R_1 、 R_2 中的一个,替换前后,电源的电功率增加了 0.9 瓦,求电阻 R_0 的阻值.

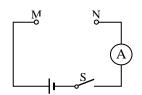

- 5: 如图 12(a)所示,电源电压为 6 伏保持不变,电阻 R_1 的阻值为 10 欧,滑动变阻器标有" 50Ω 0.5A" 字样。闭合电键 S 移动变阻器滑片 P,当电压表 V 的示数如图 12(b) 所示时,求:
- ① 流过电阻 R_1 的电流 I_1 。
- ② 滑动变阻器连入电路的阻值 R2。
- ③ 在移动变阻器滑片 P 的过程中电压表示数的最大变化量 ΔU



6: 如图所示电路,电源电压为 12 伏且不变, R_1 的阻值为 10 欧,滑动变阻器 R_2 上标有"50 Ω 1A"字样。闭合电键 S 后,通过 R_1 的电流为 0.2 安。

- ①求 R_1 两端的电压 U_1 。
- ②求 10 秒内电流通过 R_1 做的功 W_1 。
- ③在电路安全工作的情况下,移动变阻器的滑片 P 到某位置,使 R_1 消耗的功率与 R_2 消耗的功率之比最大,求此时变阻器连入电路的阻值 R_2 。

- 7: 在图所示的电路中,电源电压为 9 伏,滑动变阻器 R_1 标有"50 Ω 2A"字样。
- ① 现将变阻器 R_1 的滑片 P 移至右端,闭合电键 S,求电流表的示数。
- ② 再将阻值为 10 欧的电阻 R_2 以某种方式接入图 10 所示的电路中。闭合电键 S 后,滑片 P 在变阻器 R_1 的某两点间移动过程中,观察电流表,得到了三次电流值,如右表所示。
- (a) 当电流表的示数为 0.3 安时,求变阻器 R_1 接入电路的电阻。
- (b) 小明同学根据表中的电流,推算出电流表示数可能的最小值、最大值分别为 0.15 安、2.9 安。请你通过计算并说明小明的推算是否正确。



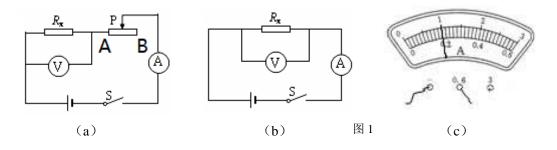
序号	1	2	3
电流(安)	0.20	0.30	0.40

【提高训练】

- 1: 在图所示的电路中,电源电压保持不变。
- ①若电源电压为 18 伏,将标有" 50Ω 2A"字样的滑动变阻器 R_0 接入 M、N 接线柱,闭合电键 S,电流表的示数为 0.9 安。
- a. 求此时滑动变阻器的阻值 R_0 。
- b. 求滑动变阻器的最大功率 $P_{0\text{max}}$ 。

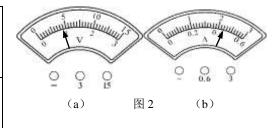
②将另一滑动变阻器 R_1 分别与阻值为 10 欧的 R_2 、阻值为 20 欧的电阻 R_3 以串联(或并联)的方式接入 M、N 接线柱。闭合电键 S 移动滑片,观察到电流表的最大、最小示数如下表所示。请你对电路的连接方式提出假设,并根据假设求出电源电压 U、滑动变阻器的最大阻值 R_{1max} 以及允许通过滑动变阻器的最大电流 I_{1max} 。(只需提出一种情况的假设)

定值电阻	电流表 A 的最大示数	电流表 A 的最小示数		
10 欧	2 安	1.5 安		
20 欧	1.5 安	1 安		


第十五讲 电路专题复习 (综合)

一、用电流表、电压表测电阻

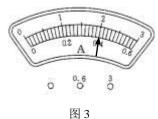
【基础训练】


1.在做"用电流表、电压表测电阻"的实验中,连接电路时电键必须处于状态(选填"断开"
或"闭合")。现有待测电阻 R_x 、滑动变阻器、电压表、电流表、电键、若干导线和多节干电池,小李
按照图 1(a) 所示的电路正确连接电路,在闭合电键前,他应将滑动变阻器的滑片 P 移到
(选填"A"或"B")端,闭合电键后测得 R_x 两端的电压是 4 伏, 电流表示数如图 $1(c)$ 所示是
安,计算此时电阻 R_x 的阻值是
减小误差,下列做法可行的是。

- A. 按照图 1 (a) 所示的电路, 移动滑动变阻器的滑片 P 的位置;
- B.. 按照图 1(b) 所示的电路, 多更换几个相同的待测电阻 R_x ;
- C. 按照图 1 (b) 所示的电路, 改变串联干电池的节数;

2.小张同学做"用电流表、电压表测电阻"的实验,实验器材齐全完好,所用电源的电压为 6 伏。他先将滑片置于变阻器的一端,然后连接电路,闭合电键,在向变阻器另一端移动滑片的过程中,观察到电压表的示数从 4 伏逐渐变小到 0 伏、电流表的示数从 0.2 安逐渐变大到 0.58 安。小张经过思考后发现了实验操作中的不当之处,随后重新正确连接电路进行实验。闭合电键后,移动变阻器的滑片到某个位置时,两个电表的示数分别如图 2 (a)、(b) 所示。根据该同学实验中观察到的现象,请将有关的数据填入表格内,并求出 R_X 的阻值。(计算电阻时,精确到 0.1 欧)

实验序号	电压 <i>U</i> x (伏)	电流 I x (安)	电阻 Rx (欧)	电阻 Rx 平均值 (欧)
1		0.2		
2				
3		0.58		



【提高训练】

1.小华和小明做"用电流表、电压表测电阻"实验,现有电源(电压为2伏的整数倍且保持不变)、一 个待测电阻 R_x 、电流表、电压表、滑动变阻器两个(甲: "20 Ω 2A",乙: "50 Ω 2A")、电键以及导 线若干。小华首先选择一个变阻器进行实验,他正确连接电路,使变阻器接入电路中的电阻最大, 闭合电键时电表示数如表一中实验序号 1 所示。小明用另一个变阻器实验,正确连接电路且使变阻 器接入电路中的电阻最大,闭合电键时电表示数如表二中实验序号1所示。

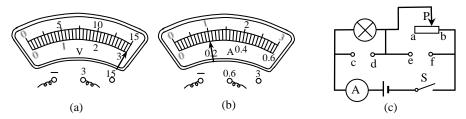
表一: 小华的实验记录				
实验	电压表示数	电流表示数		
序号	(伏)	(安)		
1	2.0	0.20		
2				
3				

表二: 小明的实验记录				
实验	电压表示数	电流表示数		
序号	(伏)	(安)		
1	2.0	0.20		
2				
3				

① 若小华选择的变阻器为 , 他实验所用电源的电压为

- ② 实验中他们分别移动变阻器的滑片 P 到某一位置时,观察到电流表示数均如图 3 所示。他们继续 移动滑片 P, 发现当电压表示数最大时, 电流表指针在图 3 的位置上恰好都偏转了 8 格。请将他们 的实验数据填写在表一、表二的实验序号2中。
- ③ 小华和小明都只测量了两组数据,不符合实验要求,两位同学讨论后找到了解决问题的办 法。请简要说明他们的解决办法,并通过计算求出 R_x 的阻值(计算电阻时精确到 0.1 欧) 2.小闵同学在做"用电流表、电压表测电阻"的实验中,选用了若干节新的干电池作为电源,标有"20 欧 1 安"字样的滑动变阻器及其它相关器材。他先用导线把待测电阻、滑动变阻器、电流表、电源、 电键串联连接,再把电压表并联接入电路中。实验中,小闵根据需要改变了电表量程,但没改变各 电表接入的位置。在保证电路安全的情况下小闵移动滑片,他记录下了电压表的最大示数为 6 伏, 最小示数为 2.6 伏; 且观察到电压表的示数从 6 伏变化到
- 4.5 伏时电流表示数的变化量为 0.29 安。
- (1) 滑动变阻器上标有的"20 欧 1 安"字样, 其意义是

(2) 请判断电压表所接的位置,并简述理由。


物理量	电压 <i>U</i> _x	电流 I _x
实验序号	(伏)	(安)
1		
2		
3		

(3) 根据以上信息请将实验数据记录表填写完整。

二、测小灯泡电功率

【基础训练】

1.小徐做"测定小灯泡的电功率"实验,现有电源(电压为定值)、待测小灯泡(标有"4V"字样)、电流表、电压表(只有 0~3 伏档完好)、滑动变阻器 A、B(A 标有"10Ω 1A"字样、B 标有"20Ω 1A"字样)、电键及导线若干。他选用其中一个滑动变阻器正确连接电路后进行实验,当移动变阻器滑片至某一位置时,发现电压表、电流表的示数如图(a)、(b)所示。

他经过思考,重新连接电压表后进行实验,将新测得的三组数据记录在下表中。

物理量	电压 U	电流 I	小	灯
实验序号	(伏)	(安)	功率	亮度
1	3.0	0.2		较暗
2	2.5	0.22		较亮
3	2.0	0.24		最亮

①小徐在实验中选用的滑动变阻器是(选填"A"或"B")	。重新接入	电压表时,他	也把电压表接		
在(选填"cd"或"ef")位置。					
②实验中小徐观察到小灯三次的发光亮度不同,因此他在"亮度"	"这一列填写	写了"较暗、较	泛亮、最亮",		
他经过判断后确认实验序号时小灯泡	恰好正常	发光,他美	判断的依据		
是, 小灯的额定电功率 P		瓦。			
2.小华做"测定小灯泡电功率"实验,所用器材如下:电源(电压保持不变)、电流表、电压表(0~15					
伏量程损坏)、滑动变阻器、待测小灯(标有" $0.2A$ "字样)、电键 S 以及导线若干。小华先正确串联					
实验器材,然后将电压表并联在电路中。闭合电键后,移动变	物理量	电压(伏)	电流 (安)		
阻器的滑片,将测得数据记录在下表中。小华在分析、思考后,	1	3.0	0.16		
拉耳((500 04))对关处理工产四四 手扩下水中陷土地 光炮	2	2.5	0.20		

① 测定小灯泡电功率的实验原理是: ______

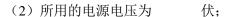
后,观察到此时电流表、电压表的示数为 0.1 安、1.0 伏。

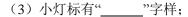
换用"50Ω 2A"字样的滑动变阻器,重新正确串联电路,并将

电压表并联在合适的电路两端,且实验步骤正确。闭合电键 S

2.0

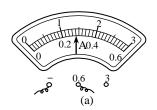
0.24

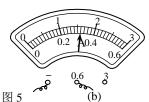

2	判断小灯泡正常发光的方法是:	0
---	----------------	---


③ 求: 小灯泡的额定功率(请写出计算过程)

【提高训练】

1.在"测定小灯泡的电功率"实验中,电源电压为 2 伏的整数倍,滑动变阻器上标有"10Ω 2A"字样,小灯标有"2.2V"、"3.8V"字样。小娜同学从两个小灯中选用一个进行实验,连接好电路后,先把滑片移到变阻器的一端,闭合电键,观察到电流表示数如图 5(a)所示;然后移动滑片使小灯正常发光;继续移动滑片到滑动变阻器的中点位置时,电流表示数如图 5(b)所示,电压表示数的两次变化量恰好相同,电流表示数的两次变化量也相同。


(1)	小灯正常发光时的电流为	安;
\ 1 /	-1 -11 TT 11 12 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1	



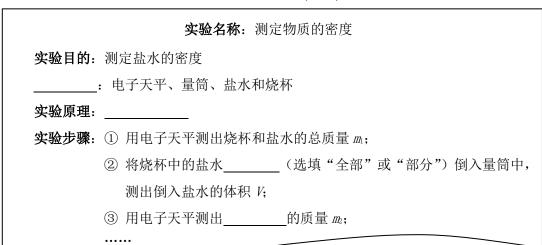
(4) 小灯的额定功率为_____ 瓦。

请画出正确的实验电路图。

2.某兴趣小组在进行测定小灯泡额定功率实验时,可用的实验器材有:标有"0.2 安"字样的小灯泡、3 节新干电池、标有"10 欧 1 安"和"5 欧 1 安"的滑动变阻器、电压表、电流表、电键和导线若干,所有器材均完好。他们第一次选择了 3 节新干电池和标有"5 欧 1 安"的变阻器及其它相关器材进行实验,实验电路连接正确、步骤规范,但在实验过程中发现无法完成实验。接着,他们更换了部分器材,使用 2 节新干电池和标有"10 欧 1 安"的变阻器重新进行了第二次实验,但在实验过程中发现依旧无法完成实验。然后他们经商量,对器材又做了一定的调整,最后顺利地完成了实验。

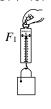
请分析他们第一次实验时无法完成实验的原因是: 。

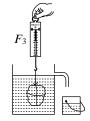
(3)该小灯泡的额定功率应介于_____瓦至___瓦之间。

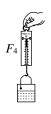

第十六讲 实验复习

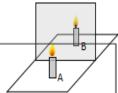
【基础练习】

1.使用电流表测量电流时,必须先选择适当的 ,接线时必须使电流从 接线柱流入电流表(选填"+"、"一")。弹簧测力计是测量 的工具,用它测量前 要使指针对准 2.在"探究二力平衡的条件"实验中,小王同学用如图 1 所示的装置探究当物体甲受到水平方向两个力 的作用而处于 时,这两个力的 和方向关系,此时测力计的示数为 牛,若甲 物体在这两个力作用下向右作匀速直线运动,这时向右的拉力______向左的拉力(选填"大于"、"等 于"或"小于")。


3.在"测定物质密度"的实验中,小李填写的实验报告(部分)如下,请完成空格处的内容。


4.小华做"验证阿基米德原理"的实验中,用图 2 (a) 所示的溢杯和小桶收集石块排开的水,他的实 验过程分别如图 1 (b)、(c)、(d)、(e) <u>所</u>示。





- (a) 溢杯和小桶 (b) 测小桶的重力 (c) 测…… (d) 测石块浸在水中时的重力 (e) 测小桶和排开水的重力
- (1)图(c)所示,是小华在使用 测量石块的。

- (2) 若图中四个测量值 F_1 、 F_2 、 F_3 、 F_4 满足关系式______, 该原理将得到验证。
- (3) 以下关于实验过程中的操作,会影响验证结果的是。
- A. 图(a)中溢杯内未盛满水。
- B. 图(b)中小桶内有少量水。
- C. 图 (d) 中石块未浸没水中。

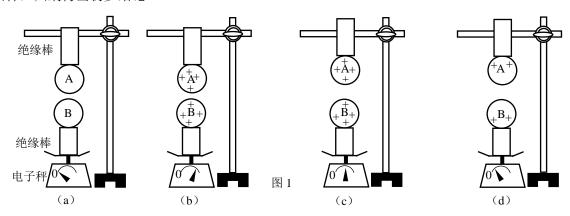
5.在研究"平面镜成像的特点"的实验中,小华填写的实验报告(部分)如下,请完成空格处的内容。

实验名称 平面镜成像

_____: 研究平面镜成像的特点。

实验器材:玻璃板、两支完全相同的蜡烛、____、火柴、光屏、白纸、支架。

实验步骤: 1. 如图 3 所示,把玻璃板______放在水平桌面上。


2.

3. 在蜡烛 B 的位置放一光屏,屏上没有像,这说明平面镜所成的像

是。

【提高练习】

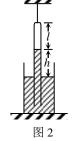
1.某小组同学为了研究带同种电荷的带电体之间排斥力的大小与哪些因素有关,他们用测微小力的电子秤和两个带同种电荷的金属球 A、B 进行图 7 所示的实验。他们先将电子秤调零,如图 1(a)所示。然后让金属球 A、B 分别带等量同种电荷,带电体间排斥力的大小通过电子秤的示数观察。已知图 1(c)、(d)中 A、B 球间距相同,且大于图 7(b)中 A、B 球间距;图 1(b)、(c)中 A、B 球电量相等,且大于图 1(d)中 A、B 球的电量。实验现象如图 7 所示,请根据实验现象及相关条件,归纳得出初步结论。

①分析比较图 1 (b) 和 (c) 中电子秤示数和相关条件可得: ______。
分析比较图 1 (c) 和 (d) 中电子秤示数和相关条件可得: ______。

2.为了"探究凸透镜成实像的规律",小张和小李同学利用焦距 f_1 为 10 厘米的凸透镜、一个高度为 6 厘米的发光体、光屏和光具座等进行实验。实验中,他们正确组装和调试实验器材,按表一中的物 距 u 依次进行实验,每次都使光屏上发光体的像最清晰,并将相应的像距 v、成像情况记录在表一中。然后他们换用焦距 f_2 为 15 厘米的凸透镜,重复上述实验,并将数据记录在表二中。

表一 焦距 10 厘米

表二 焦距 15 厘米


实验序号	物距(厘米)	像距(厘米)	像高(厘米)
1	20	20	6
2	30	15	3
3	40	13.3	2
4	50	12.5	1.5

实验序号	物距(厘米)	像距(厘米)	像高(厘米)
5	20	60	18
6	30	30	6
7	40	24	3.6
8	50	21.4	2.57

(1) 分析比较实验序号 1 或 6 数据中物距 u 与像距 v 的大小关系及成像情况,可得出的初步结论是:

- (2)分析比较实验序号 1、2、3、4 或 5、6、7、8 数据中物距 u、像距 v 及成像的变化情况,可得出的初步结论是:
- (3)小张同学计算了表一中物距与像距之和,由此得出结论:同一物体经同一凸透镜成实像时,物 距与像距之和越小,成的像越大。

小李通过分析比较实验序号 ,判断小张的结论是 的(选填"正确"、"错误")。

表一

表二

实验序号	h/厘米	F/牛
1	46	4.6
2	36	3.6
3	26	2.6
4	16	1.6

实验序号	h/厘米	p/厘米汞柱	1/厘米	
5	46	30	20	
6	36	40	15	
7	26	50	12	
8	16	60	10	

①分析比较表一中实验序号 1 与 2 与 3 与 4 中 F 与 h 变化的倍数关系及相关条件可初步得出:在外界温度和气压不变的情况下,_____。

他们在进行上述实验时,发现随着 h 的变化,管内水银面上方气体柱的长度 l 也发生了变化。他们

猜想管内	气体压强	也会发生	变化。于是	是他们重复	进	行了上述的	实验,测出	出管内气体	柱的长度	l, 并用	
DIS 实验	器材测出的	管内气体的	的压强 <i>p</i> ,	实验数据记	记录	是在表二中	0				
②分析比	较表二中	实验序号_				中 <i>p</i>	与 h 变化	关系及相	关条件可初]步得出:	
封闭在玻	璃管中的	气体,在	外界温度和	11气压不变	的'	情况下,h	越小, p	越大;			
③分析比较表二中实验序号 5 与 6 与 7 与 8 中 l 与 h 的关系及相关条件可初步得出:封闭在玻璃管											
中的气体	,在外界	温度和气息	玉不变的情					;			
④进一步	综合分析	比较表一	和表二中的	勺实验数据	及	相关条件,	可推理得	引出当管内	外水银面	高度差 h	
为 28 厘米时,拉力 F 的大小为											
米汞柱,管内气体柱的长度 l 为											
4.小徐用图3所示的电路研究串联电路中电阻的作用。实验中保持电源电压不变,											
在电路中分别接入电阻 R_1 和 R_2 。已知 R_1 =10 欧, R_2 分别为不同阻值的电阻。他 R_2											
们将实验	数据记录	在表一中。)						图	3	
		表一						表二			
序号	$R_1(\Omega)$	$R_2(\Omega)$	V ₁ 表(V)	V ₂ 表(V)		序号	$R_1(\Omega)$	$R_2(\Omega)$	V ₁ 表(V)	V ₂ 表(V)	
1	10	0	6	0		6					
2	10	10	3	3		7					
3	10	20	2	4							
4	10	30	1.5	4.5							
5	10	40	1.2	4.8							
①分析比	较表一中	第二列、	第三列与第	育五列的数	[据	及相关条件	牛,归纳得	身出的初步	结论是:	串联电路	
中, 在电	源电压不	变的情况	下,一个电	1阻不变,						o	
②分析比	较表一中					的数据及构	目关条件,	归纳得出	的初步结	论是: 串	
联电路中	,在电源	电压不变	的情况下,	定值电阻	且两	5端的电压	随着另一日	电阻值的均	曾大而减小	• 0	
③进一步	综合分析	比较表一	中第四列与	5第五列的	数	据及相关组	条件,归纳	的得出的初	步结论是:	: 串联电	
路中,在日	电源电压ス	下变的情况	2下,							o	
④进一步	综合分析	比较表一	中的数据及	及相关条件	, 归	日纳得出的	初步结论	是:		o	
为了使实	验结论具	有普遍意	义,他们为	又继续进行	实	验。请你在	生表二中的	的第二例、	第三列中	的空白处	
填入拟进	行实验的	数据:				,以达	到研究目的	的。			

第十七讲 考点复习(1)

一、二力平衡

1.如图 1 所示,小刘同学站在电子秤上测体重,下列说法正确的是[

- A.小刘受到的重力和地面对电子秤的支持力是一对平衡力
- B.电子秤受到的重力和地面对电子秤的支持力是一对平衡力
- C.小刘受到的重力和电子秤对小刘的支持力是一对平衡力
- D.小刘受到的重力和小刘对电子秤的压力是一对平衡力

图 2

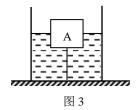
2.如图 2 所示,置于地面上的物体甲,沿水平地面做直线运动时,受到大小不变、水平向左的拉力 F, 受到地面的滑动摩擦力 f。若物体甲水平向右运动,它水平方向受到的合力大小为 10 牛,若物体甲 水平向左运动,它水平方向受到的合力大小为 4 牛,则物体甲受到地面的滑动摩 甲

擦力f的大小[]

- A. 一定为3牛 B. 可能为7牛
- C. 可能为6牛 D. 一定为14牛

3.将重为G的物体挂于测力计下,使它们以大小为 v_1 的速度向上做匀速直线运动,然后以 v_2 的速度 向下做匀速直线运动,且 $v_1>v_2$ 。已知前后两次测力计的示数分别为 F_1 、 F_2 ,若不计空气阻力,则 []

- A F_1 可能大于 G B F_2 可能小于 G
- C F_1 一定大于 F_2 D F_1 一定等于 F_2


4. 竖直向上抛出重力为G的小球,小球在运动中受到的阻力总是跟运动方向相反,大小为f。则在上 升过程中小球所受的合力 F_{α} 的大小为[1

A. f B. G C. G+f D. G-f

5.重为 G 的物体在水平向右拉力 F 的作用下,在水平桌面上向右做匀速直线运动,现突然使拉力 F变为原来的一半,则物体在静止前受到摩擦力大小为[1

- B. G F/2
- C. F

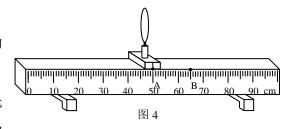
6.在图 3 中,重为 G 的木块 A 用细线固定在装水的容器中,当木块一半体积浸 在水中时,细线对木块的拉力为F。若木块全部浸没在水中时,则细线对木块 的拉力大小为[1

- A. 2F
- B. F+G
- C. 2F+G
- D. 2F-G

二、凸透镜成像

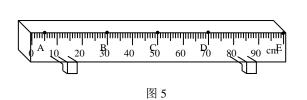
1.物体置于距凸透镜的焦点 10 厘米处,在透镜另一侧光屏上成一个放大的像。该透镜的焦距可能为 []

- A. 5 厘米 B. 8 厘米 C. 10 厘米 D. 15 厘米


2.物体从距凸透镜 24 厘米处,沿主光轴移动到距透镜 16 厘米处的过程中,光屏上所成的像,由缩 小的像变为放大的像,则该透镜的焦距可能为[]

A. 8 厘米 B. 10 厘米 C. 12 厘米 D. 16 厘米

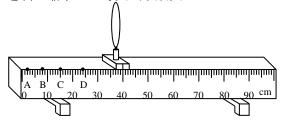
3.某凸透镜的焦距为 10 厘米, 若将发光体放在离透镜 25 厘米的主光轴上, 所成的像是倒立、

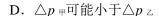

的实像:若将发光体沿主光轴向凸透镜移动 10 厘米,则此时所成像的像距 20 厘 米(选填"大于"、"等于"或"小于"),将发光体再沿主光轴向凸透镜移动一段距离,直到发光体无法 通过凸透镜成实像,则发光体再移动的距离至少为 厘米。

4.如图 4 所示, 在"探究凸透镜成像的规律"实验中, 调整实验装置时,要使凸透镜和光屏的中心跟烛焰的 中心大致在。若凸透镜焦距为12厘米, 将凸透镜置于光具座上 A 点处, 在距 B 点 5 厘米的光 屏上能找到清晰的像,则这个像一定是 的

5.在图 5 所示的光具座上标有的 A、B、C、D、E 五点。当凸透镜放置在这五点中的某点处,恰有两 发光物置于光具座的 A 点处, 光屏在 E 点附近能得到一个缩小的像, 该凸透镜应放置在光具座的

_点。若不改变上述发光物与光屏的位置,将凸透镜向_______点移动(选填"A"或"E"), 光屏上可再次得到一个实像,该像是_____的(选填"缩小"、"等大"或"放大")。




图 6

6.在图 6 所示光具座上,从左到右依次放置蜡烛、凸透镜和光屏,调整透镜和光屏的中心大致与 烛焰的中心在_____高度。先后两次将焦距为 10 厘米和 15 厘米的凸透镜放置在"40 厘米"刻

三、压强变化问题

7.两个底面积不等的圆柱形容器,分别盛有甲乙两种不同的液体,将两个完全相同的小球分别浸入这两种液体中,小球静止时的位置如图 7 所示,此时两液面刚好齐平。若将这两小球从液体中取出,则液体对容器底部的压强的变化量 $\triangle p_{\pm}$ 、 $\triangle p_{\pm}$ 的大小关系是[

- A. $\triangle p_{\parallel}$ 一定小于 $\triangle p_{\perp}$
- B. $\triangle p$ =一定等于 $\triangle p$ Z
- C. $\triangle p$ 甲一定大于 $\triangle p$ Z

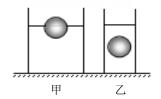
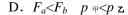



图 7

8.如图 8 所示,形状相同的甲、乙两个杯中,装有相等质量的水,再将质量相等的两个实心小球 a 和 b ($\rho_a < \rho_{\star} < \rho_b$)分别放入甲、乙两杯中(水未溢出),小球 a 和 b 受到的浮力分别是 F_a 和 F_b ,甲、乙两个杯底部受到水的压强分别是 p_{\parallel} 和 $p_{\rm Z}$,则下列关系式正确的是[

- A. $F_a > F_b$ $p \neq$
- B. $F_a > F_b$ $p \neq > p z$
- C. $F_a = F_b$ p = p z

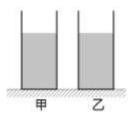
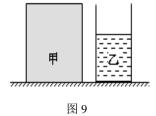
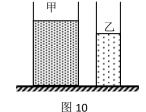



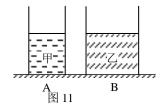
图 8

9.如图 9 所示,均匀圆柱体甲和盛有液体乙的圆柱形容器放置在水平地面上,甲、乙质量相等。现沿水平方向切去甲并从容器中抽出乙,且切去甲和抽出乙的高度相同,则比较甲对地面的压强和乙对容器底部的压强大小关系[

- **A.** p 〒一定大于 p z
- B. p 〒一定小于 p z
- C. p 申一定等于 p z

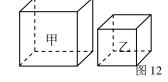


10.如图 10 所示,底面积不同的圆柱形容器分别盛有甲、乙两种液体,液体对各自容器底部的压强相等。若在两容器中分别抽出相同高度的液体,则剩余液体对各自容器底部的压强 p、压力 F 的关

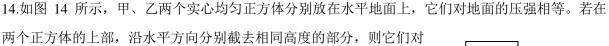

系是[]

- A. $p \neq p \neq r$; $F \neq r \neq r \neq r$
- C. $p = p_{\mathbb{Z}}$; $F = F_{\mathbb{Z}}$
- D. $p = p \subset F \subset F \subset F$

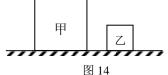
11.如图 11 所示, 底面积不同的圆柱形容器 A 和 B 分别盛有甲、乙两种液体, 两液面相平, 且甲的 质量大于乙的质量。若在两容器中分别放入两个不同物体后,液面仍保持相平,则此时液体对各自 容器底部的压强 p_A 、 p_B 和压力 F_A 、 F_B 的关系是[


- A. $p_A < p_B$, $F_A = F_B$
- B. $p_A < p_B$, $F_A > F_B$
- C. $p_A > p_B$, $F_A = F_B$
- D. $p_A > p_B$, $F_A > F_B$

12.如图 12 所示, 甲、乙两个实心正方体放置在水平桌面上, 它们对水平地面的压强相等。若沿水 平方向分别切去体积为 V 的部分, 然后将切去部分交换叠放在剩余部分上, 这时它们对水平地面的


- 压强分别为 p #和 p z ,则[
- A. p **#**=**p** ∠

- D. 都有可能


13.如图 13 所示, 甲、乙为两个实心均匀正方体, 它们对水平地面的压强相等。若在两个正方体的 上部,沿水平方向分别截去相同高度的部分,并将截去部分叠放在对方剩余部分上,它们对地面的

- 压强为 p_{\parallel} 和 p_{z} ,下列判断正确的是[]
- - **B**. *p* _甲一定小于 *p* _乙
- **C.** *p* _■可能大于 *p* _Z
- D. p_{\parallel} 一定大于 p_{\perp}

- 地面压力的变化量 $\triangle F_{\parallel}$ 、 $\triangle F_{Z}$ 的关系是[]
- A. $\triangle F_{\parallel}$ 定大于 $\triangle F_{\perp}$ B. $\triangle F_{\parallel}$ 可能大于 $\triangle F_{\perp}$

- C. $\triangle F_{\parallel}$ 一定小于 $\triangle F_{\perp}$ D. $\triangle F_{\parallel}$ 可能小于 $\triangle F_{\perp}$

- 15.如图 15 所示,两个底面积不同的圆柱形容器 A 和 B $(S_A > S_B)$,容器足够高,分别盛有甲、乙两种 液体,且两种液体对容器底部的压强相等。若在 A 容器中倒入或抽出甲液体,在 B 容器中倒入或抽出 乙液体,使两种液体对容器底部的压力相等,正确的判断是[
- A. 倒入的液体体积 V_{\parallel} 可能等于 V_{\perp}
- B. 倒入的液体高度 h_{\parallel} 一定大于 h_{\perp}
- C. 抽出的液体体积 V_{\parallel} 可能小于 V_{\perp}
- D. 抽出的液体高度 h_{\parallel} 一定等于 h_{\perp}

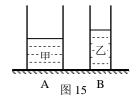
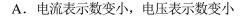


图 2

第十八讲 考点复习 (2)

一、动态电路

1.在图 1 所示的电路中, 电源电压保持不变。当电键 S 从断开到闭合时, 电路中[


A. 电流表的示数变小, 电压表的示数变小

B. 电流表的示数变小, 电压表的示数变大

C. 电流表的示数变大, 电压表的示数变小

D. 电流表的示数变大, 电压表的示数变大

2.在图 2 所示的电路中, 电源电压保持不变。当电键 S 由断开到闭合时, 电路中[

B. 电流表示数变小, 电压表示数变大

C. 电流表示数不变, 电压表示数变小

D. 电流表示数不变, 电压表示数变大

3.在如图 3 所示电路中,电源电压保持不变。将滑动变阻器的滑片向右移动,电压表 V 与电流表 A 的比值变大。关于电键的通断,下列

说法中正确的是[]

①电键 S_1 闭合, S_2 断开 ②电键 S_1 闭合, S_2 闭合

③电键 S_1 断开, S_2 断开 ④电键 S_1 断开, S_2 闭合

A 1)2 B 2)3 C 1)24 D 1)23

4.在如图 4 所示的电路中, 电源电压保持不变, 闭合电键 S, 向右移动滑动变阻器滑片 P 的过程中

[]

A. 电流表 A 示数变大

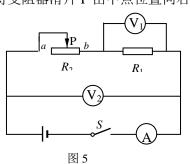
B. 电压表 V_1 示数变小

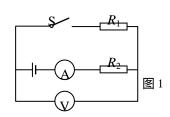
C. 电压表 V_1 示数与电压表 V_2 示数的差值变大

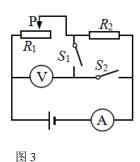
D. 电压表 V_1 示数与电流表 A 示数的比值变大

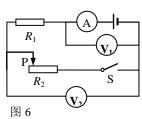
度大 R_1 R_2 R_2 R_3 R_4

5.在图 5 所示的电路中,电源电压保持不变。电键 S 闭合,将变阻器滑片 P 由中点位置向右移动到 b


端的过程中[]

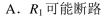

A. 电流表 A 的示数变小。


B. 电压表 V_2 的示数变大。


C. 电压表 V_2 示数与电压表 V_1 示数之差变小。

D. 电压表 V_2 示数与电流表 A 示数比值变大。

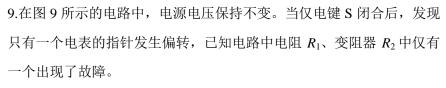
 R_1


图 7

7.如图 7 所示电路中,电源电压保持不变,滑动变阻器的滑片 P 处在中点位置。闭合电键 S 后,电流表示数为 I,电压表示数为 U。当滑片 P 移至右端时[

- A. 电流表示数可能是 I/2
- B. 电流表示数可能是 I/3
- C. 电压表示数可能是 2U
- D. 电压表示数可能是 1.5U

二、电路故障


8.在如图 8 所示的电路中,电源电压保持不变。电路中存在断路故障,且故障只可能发生在电阻 R_1 、 R_2 处,当电键 S 由断开到闭合时,电流表 A 与 A_1 的示数始终相等,则[]

B. R_1 一定断路

 $C. R_2$ 一定断路

D. R_1 、 R_2 一定同时断路

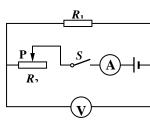
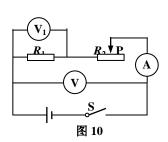
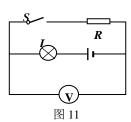



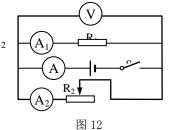
图 9

图 8

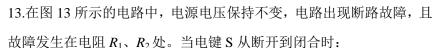
- ①电路中故障可能发生在_____; (选填"R₁"或"R₂")
- ②接着,向右移动变阻器 R_2 的滑片 P ,只观察到一个电表的示数发生了变化,则故障的种类是_____。(选填"短路"或"断路")

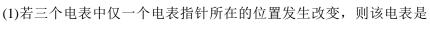

10.在图 10 所示的电路中,电源电压保持不变。闭合电键 S,发现三个电表中有两个电表的指针发生偏转,已知电阻 R_1 、滑动变阻器 R_2 中仅有一个出现了故障,其它元件均完好。

① 电路中一定有示数的电表是_____表; ② 接着,移动变阻器


 R_2 的滑片 P,发现各表的示数均不发生改变,则故障是_____

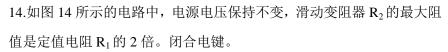
11.在如图 11 所示的电路中,电源电压为 4.5 伏,若电路中仅有一处故障,且只发生在电阻 R、灯 L 上。电键 S 闭合前后,电压表指针的位置不变,且灯不 亮 , 请 根 据 相 关 信 息 写 出 电 压 表 的 示 数 及 相 应 的 故 障

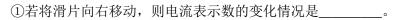

12.在图 12 所示的电路中,电源电压保持不变。闭合电键 S,电路正常工作,

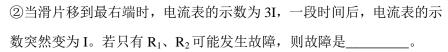

一段时间以后有两个电表的示数发生变化,已知电阻 R_1 、滑动变阻器 R_2 中仅有一个出现故障。

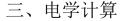
- (1) 电路中的故障可能是_____;
- (2)接着,移动变阻器 R_2 的滑片 P,又观察到两个电表的示数发生了改变,

则故障一定是____。




_____,电路的故障发生在_____处。




(2)若三个电表指针所在的位置均没有发生改变,请写出电路的故障情

况: _____

15.图 15 (a) 所示电路中,电源电压 12 伏保持不变,电阻 R_1 =5 欧,滑动变阻器 R_2 标有"20 Ω 1.5A"字样。闭合电键后:

- (1) 若通过 R_1 的电流为 0.8 安,求此时 R_1 两端的电压及电路的总电阻。
- (2)请通过计算说明:在电路安全前提下,选择电压表不同的量程时,通过移动变阻器滑片的位置,能否使电压表指针分别指在图 9 (b) 所示位置处。

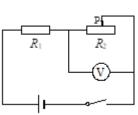
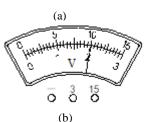



图 14

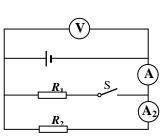
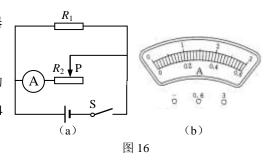
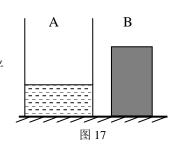
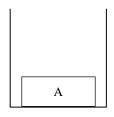



图 13

16. 在图 16 (a) 所示的电路中,电阻 R_1 的阻值为 10 欧,滑动变阻器 R_2 上标有"20 Ω 2A"字样,所用电流表的表盘如图 16 (b) 所示。闭合电键 S,通过 R_1 的电流为 0.6 安。求:


- (1) 电阻 R_1 两端的电压。
- (2) 变阻器的滑片 P 移至最右端后,10 秒内变阻器 R_2 消耗的电能。
- (3) 若用一个新的电源替换原来的电源,要求在移动变阻器滑片 P 的过程中电流表示数的最大变化量为 1.4 安。请找出满足条件的电源电压。

四、 压强计算


17.如图 17 所示,水平桌面上放有轻质圆柱形容器 A(容器足够高)和实心圆柱体 B。容器 A 内装有深为 0.1 米的水,实心圆柱体 B 的质量为 4 千克、高为 0.2 米、底面积为 0.01 米 2 。求:

- (1)圆柱体B的密度。
- (2) 水对容器底部的压强。
- (3) 将圆柱体 B 竖直放入容器 A 中,能浸没在水中时,容器 A 对水平 桌面压强的最小值。

18.盛有水的柱形容器置于水平地面上,现有一个棱长分别为 0.1 米、0.1 米和 0.3 米的实心长方体金属块 A,将 A 平放入容器中后,A 浸没在水中,如图 18 所示(图中水面位置未画出)。

- (1) 求 A 所受浮力的大小。
- (2) 若 A 的质量为 8.1 千克, 求 A 的密度。
- (3) 若容器的内底面积为 $0.05 \, \text{米}^{\, 2}$,现将 A 由原平放改成竖放在水中,求容器 底受到水的压强变化量的范围。

