高一化学 新编教案

第一讲 原子结构、同位素、离子	2
第二讲 相对原子质量	8
第三讲 核外电子排布、电子式	12
第四讲 原子结构综合应用	17
第五讲 物质的量及计算	22
第六讲 气体摩尔体积	27
第七讲 物质的量浓度的计算	32
第八讲 阶段测	
第九讲 氧化还原反应的基本概念	43
第十讲 氧化还原反应的配平	48
第十一讲 氧化还原反应的计算	53
第十二讲 氧化还原反应综合练习	57
第十三讲 化学键、离子键、离子化合物	61
第十五讲 共价键、共价化合物、共价分	子66
第十六讲 化学键综合复习	71

第一讲 原子结构、同位素、离子

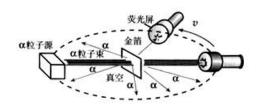
【考查要求】

- I、了解原子的结构
- II、理解同位素的概念,能够判断同位素
- III、理解离子的含义,只要离子构成的物质

【初	直	ф	紆	埣	٦
L 17/	一一	н,	HΗ	14	

1、由	组成的	互称为同意	素异形体。
举例:			
2、原子、原子团及其化台	合价的书写		
原子: 铁	铜	镁	钠
氯	硫	碘	溴
原子团: 铵根	氢氧根	硫酸根	碳酸根
硝酸根			
3、元素与原子的区别			
● 离子的相关知识			
离子——离子是带电荷的			
阳离子: 带正电荷的离子	,如:镁离子 Mg	g ²⁺ 铁离子 Fe ³⁺	亚铁离子 Fe ²⁺
铵根离子 NH ₄ +			
阴离子: 带负电荷的离子	,如:硝酸根离	NO ₃ - 氯离子 (C1 ⁻
溶液中离子的颜色: Fe ³⁻	⁺ 色 F	Fe ²⁺ 色	
Cu^{2^+}	色 MnO ₄	色	
由离子构成的物质			
(1) 盐类(绝大多数	女)如 KCl Na ₂ Co	O_3 $Cu(NO_3)_2$	
(2) 强碱: 如 碱金	属对应的碱		
(3) 部分氧化物: 如	口: 低价金属氧化	物 Na ₂ O	
由离子构成的物质固态时	为离子晶体,主	要是类、フ	大多数类、活泼金
属。			

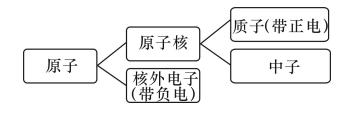
【知识整理】


● 古代哲学家有关物质构成的观点

古代哲学家	观点	
惠施	物质无限可分。	
墨子	物质被分割是有条件的;不能再被分割的部分称之为"端"。	
德谟克利特	古典原子论:物质由原子构成,原子不可再分。	
道尔顿	近代原子论。	
汤姆孙	葡萄干面包原子模型(实验: 阴极射线管)。	
卢瑟福	原子结构的行星模型(α粒子散射实验)。	

1、卢瑟福散射实验的分析:

1909年,_	(科学家)	完成了α
粒子散射实验。	并分析如下:	


- (1) 绝大多数α粒子穿过金箔后,仍沿原来方向前进说明____。
- (2) 极少数α粒子偏转超过 90°, 有个别的α粒子 甚至被弹回,即:偏转角接近 180°说明

α粒子散射实验的示意图, 荧光屏可以沿 着图中虚线转动,用来统计向不同方向散射的粒子 的数目,实验设备装在真空中,

(3)通过该实验他提出了_____模型,即**原子是由带正电荷的质量很集中的很小的** 原子核和在它周围运动着的带负电荷的电子组成。

● 原子结构

(1) 原子结构

	质子	中子	电子
质量			
带电情况			
相对质量			

同一原子中的微粒数之间的关系:

(2) 元素符号四周	周数字的含义					
$A^{\pm a}$	b ± A(大写)表	b ± A(大写)表示 Z (大写)表示				
7 X	C ±a 表示	<u>r</u>	b± 表示离子所带			
Z 11		示分子中该	的个数			
同一原子中的关	系式: 核电荷数	(Z) = 核内质子数	双 = 核外电子数			
	质量数(A	A) = 质子数(Z) +	- 中子数 (N)			
(3) 原子						
原子是化学变化中	中的	原子可以直接构成	试 和: 🤾	如:单质金刚		
石、晶体硅, 化	化合物二氧化硅 Sid	O ₂ 、碳化硅 SiC。				
(4) 元素: 具有木	目同数	((即	女)的同一类原子,	总称元素		
● 同位素						
● 同位素 原子结	构的分析					
元素符号	原子符号	核电荷数	中子数	电子数		
1 ₁ H						
Н	² ₁ H					
	^{3}H					
同位素: 具有	·和和	的同一元素	, 的原子互称同位素	<u> </u>		
● 几种常见同位	素: C 12 ₆ C 13	6C 146C 其中 14	₀C 作为原子量的	标准		
	$U^{235}_{92}U$	²³⁸ 92U 其中 ²³	35 ₉₂ U 作为制造原于	子弹		
其	他: Cl ³⁷ 17Cl	³⁵ ₁₇ Cl ²⁴ ₁₂ I	Mg $^{25}_{12}Mg$	$^{26}_{12}Mg$		
● 同位素性质:1、同位素的质量数不同. 核外电子数相同, 化学性质。						
2、同位素的化学性质。物理性质						
3、各种同位素所占的原子百分比组成。						
	1. 老古学上的磁素					

核电荷数(Z) = 核内质子数 = 核外电子数

阳离子核外电子数 = Z-n (n 离子所带电荷数) 例: $_{12}Mg^{2+}$ 阴离子核外电子数 = Z + n (n 离子所带电荷数) 例: $_{17}Cl^-$

质量数(A) = 质子数(Z) + 中子数(N)

 14 C 的含量每减少一半,须经过 5730±40 年。如 14 C 减少了 5%则距今 570 年左右, 14 C 的含量减少 25%,那末距今约 2900 年

【例题解析】

例 1、

符号	质子数	中子数	质量数	电子数
$^{40}_{18}Ar$				
²³ ₁₁ Na				
	12		24	
		20	40	

	11 1144						
		12		24			
			20	40			
例 2、	以下互为同位素的。	륃()					
A	A. 金刚石和石墨	B. D ₂ 和 H ₂	C. CO和CO ₂	D. 35 Cl 和 37 Cl	Cl		
【基础	练习★★】						
1、根排	居α粒子轰击金箔的	实验现象,提出原	子结构行星模型的积	科学家是 ()			
A	、卢瑟福	B、伦琴	C、道尔顿	D、汤姆			
2、原-	子的种类决定于原于	产的 ()					
Α.	核内质子数和中子	数 E	3. 核电荷数				
C.	核外电子数	Γ). 相对原子质量				
3、某料	拉子用 ZR ⁿ⁺ 表示,	下列关于该粒子的	的叙述正确的是()			
A	A、所含质子数 $=A-n$ B 、所含中子数 $=A-Z$						
C.	、所含电子数=Z+	n D、质量数=	=Z+A				
4、某元	元素阳离子 Rn+,核	外共有 x 个电子,	原子的质量数为 A,	则该元素原子里的	的中子数		
为()						
Α.	A-x-n B.	A-x+n C. A	A+x-n D. A	+x+n			
5、下列	属于同位素的是_	,属于同素异	形体的是,	属于同种原子的是	0		
$A \cdot {}^{1}H$	H和D B、2H	和 D C、红磷和	和白磷				
D, H	₂ O 和 D ₂ O E、	金刚石和石墨	F、Mg 和 Mg ²⁺				
6、美国	国科学家将两种元素	袁铅和氪的原子核对	 撞,获得了一种质	子数为 118、中子	数为 175		
的走	超重元素,该元素原	 手 孩 大 以 以 以 以 以 以 以 以 以 以	5核外电子数之差是	:			
A	57	B 47	C 61	D 293			

7、	据报道,月球上有大量 ³ He 存在,以下关于 ³ He 的说法正确的是
	A、是 ⁴ He 的同素异形体 B、比 ⁴ He 多一个中子
	C、是 ⁴ He 的同位素 D、比 ⁴ He 少一个质子
8,	有四种微粒 $^{40}_{18}X$ 、 $^{40}_{19}Z$ 、 $^{40}_{19}Q$ 、 $^{40}_{30}R$ 它们属于几种元素
	A, 2 B, 3 C, 4 D, 5
	提高练习】
1.	★★★铋(Bi)在医药方面有重要应用。下列关于 ⁸³ Bi 和 ⁸³ Bi 的说法正确的是()
	209 210 209 210 A、 83 Bi 和 83 Bi 都含有 83 个中子 B、 83 Bi 和 83 Bi 互为同位素
	209 210 209 210 C、 83 Bi 和 83 Bi 的核外电子数不同 D、 83 Bi 和 83 Bi 分别含 126 和 127 个质子
2.	★★★元素 R 的核电荷数为 16,原子的质量数为 32,则 R 的离子应包含(e 电子, Z 质
	子, N 中子)()
A.	16e, 16Z, 16N B.16e, 16Z, 18N C.18e, 18Z, 16N D.18e, 16Z, 16N
3.	★★★ $^{1}_{1}$ H、 $^{2}_{1}$ H、 $^{3}_{1}$ H、 $^{+}$ 和 H · ,这五种符号表示()
	A. 五种不同的微粒 B. 氢的五种同位素 C. 五种氢元素 D. 五种氢离子
4.	★★★下列各粒子: ①H ₃ O ⁺ 、NH ₄ ⁺ 、Na ⁺ ; ②OH ⁻ 、NH ₂ ⁻ 、F ⁻ ; ③O ²⁻ 、N _A ⁺ 、Mg ²⁺ ;
	④CH ₄ 、NH ₃ 、H ₂ O 具有相同质子数和电子数的正确一组是()
	A. 123 B. 124 C. 234 D. 134
5.	★★★物质发生化学变化时,反应前后肯定不发生变化的是()
	①电子总数 ②原子总数 ③质子总数 ④物质的总质量
	⑤物质的总能量 ⑥物质的种类
	A. 12345 B. 1234 C. 256 D. 3456
6.	★★★下列离子中,电子数大于质子数且质子数大于中子数的是()
	$A \cdot D_3O^+$ $B \cdot Li^+$ $C \cdot OD^ D \cdot OH^-$
7.	★★★★大多数天然元素都有同位素,自然界氧的同位素有 ¹⁶ O、 ¹⁷ O 和 ¹⁸ O,氢的同位
	素有 H 和 D, 从水分子的原子组成来看自然界的水共有()
	A. 1 种 B. 3 种 C.7 种 D.9 种

8.	★★★★元素的化学性质主要决定于原子的()
	A. 质子数 B. 中子数 C. 核外电子数 D. 最外层电子数
9.	★★★★ 13 C—NMR(核磁共振)、 15 N—NMR 可用于测定蛋白质、核酸等生物大分子的
	空间结构,KurtW ü thrich 等人为此获得 2002 年诺贝尔化学奖。下面有关 13 C、 15 N 叙述正确的是()
	A. 13 C 与 15 N 有相同的中子数 B. 13 C 与 C 60 互为同素异形体
	C. 15 N 与 14 N 互为同位素 D. 15 N 的核外电子数与中子数相同
10.	★★★★ α 射线是由 α 粒子组成的, α 粒子是一种没有核外电子的微粒,它带有 2 个单位
的』	E电荷,它的质量数等于4,由此推断α粒子带有个质子,个中子。
11.	★★★★★ 美国夏威夷联合天文中心的科学家发现了新的氢微粒,该微粒是由3个氢
Ţ	原子核(只含质子)和2个电子构成,关于这种微粒的下列说法中正确的是()
A	A. 是氢元素的一种新的同素异形体 B. 是氢元素的一种新的同位素
(C. 该微粒的组成可用 H ₃ 表示 D. 该微粒比普通氢分子多一个氢原子核
12	★★★★★关于元素和原子的关系有如下各种说法:①若是同种元素,则一定是同种原
	子;②若是同种原子,则一定是同种元素;③若是不同种元素,则一定是不同种原子; ④若是不同种原子,则一定是不同种元素。其中正确的是
	A. ①② B. ②③ C. ③④ D. ①④

第二讲 相对原子质量

【考查要求】

- I、巩固质量数、质子数和中子数三者之间的关系
- II、区分同位素的相对原子质量、质量数、元素的相对原子质量、元素的近似相对原子质量的概念

【初高中衔接】

1、相对原子质量的定义:	
2、同素异形现象与同素异形体	
一种元素形成几种单质的现象称现象。例:如碳形成金刚石、石墨。	
由同种元素形成的不同单质,称为这种元素的。如:金刚石与石墨称为硕	炭
的同素异形体。	
同素异形体的结构不同,性质不同。同素异形体之间的转化,属于变化。(例红磷转	ŧ
化为白磷)	
3、同素异形体与同位素的比较	
● 单质与原子	
【知识梳理】	
1. 原子的质量和原子的相对原子质量	
① 任何一个原子的质量都很小,用什么方法能称量出一个原子的质量?	
12gC-12 中含有 6.02×10 ²³ 个原子	
一个 C-12 原子的质量:	
②原子的相对原子质量:以一个碳 -12 原子(12 ₆ C)质量的 $1/12$ 作为标准,任何	可
一个原子的真实质量跟一个碳-12原子质量的1/12的比值,称为	勺
该原子的。	
一个 O-16 原子的质量: 2.656×10 ⁻²³ g	
相对原子质量的标准:一个 C-12 原子的质量的 1 / 12 即:	
$1.993 \times 10^{-23} \text{g} \times 1 / 12 = \underline{g}$	
O-16 的相对原子质量:	
$(2.656 \times 10^{-23} g) \div (g) = (即为该原子的相对原子质量$	()

2. 原子的近似相对原子质量

指某种元素的一种同位素相对原子质量的近似整数值 O-16 的相对原子质量:

● 相对原子质量分析

符号	同位素的原子量	在自然界中各同位素原子的含量		
³⁵ Cl	34.969	75.77%		
³⁷ Cl	36.966	24.23%		

求:氯元素的相对原子质量?

3. 元素的相对原子质量

元素的平均相对原子质量是该元素的各种同位素的相对原子质量,乘上各同位素的原子百分数计算而得平均值:

元素平均相对原子质量: $A = A_1 \times a_1\% + A_2 \times a_2\% + A_3 \times a_3\% \dots$

例: ³⁵Cl 原子相对原子质量为 34.969 自然界中的含量(丰度) 75.77%, ³⁷Cl 相对原子质量为 36.966,自然界中的含量(丰度) 24.23%。

Cl 元素的平均相对原子质量: ______

4. 元素的近似相对原子质量

元素的近似平均相对原子质量: $A = A_1 \times a_1\% + A_2 \times a_2\% + A_3 \times a_3\% \dots$

上述公式中 A₁ A₂ A₃ 用各同位素的质量数代入

例: ³⁵Cl 原子相对原子质量为 34.969 自然界中的含量(丰度) 75.77%, ³⁷Cl 相对原子质量为 36.966,自然界中的含量(丰度) 24.23%。

Cl 元素的近似平均相对原子质量: _______

【基础练习★★】

1.据报道,	某些建	筑材料会产	生质子数为 8	6,质量数为	1 222	的放射性氡	(Rn),	从而对人
体产生	:伤害,	该原子的中	子数和质子数	(的差值为()		

A. 136 B. 50 C. 86 D. 222

- 2. 下列各组微粒中, 互为同位素的是()
 - A. ${}_{1}^{2}H_{2}$ 和 H₂ B. 氢原子和氢离子 C. H₂O 和 D₂O D. ${}_{20}^{42}Ca$ 和 ${}_{20}^{40}Ca$
- 3. 在国际相对原子质量表中 C 的相对原子质量是 12.01,这是指碳的()
 - A. 质量数 B. 相对原子质量
 - C. 同位素的相对原子质量 D. 元素的平均相对原子质量

4.硼有两种	天然同位素 ¹⁰ B、	¹¹ B,硼元素的近	似相	付原子质量为 10	0.80,则对硼元素中 ¹⁰ B
质量分数的	判断正确的是:()			
A. 20%	B.略大	F 20%	C. 略	小于 20%	D.80%
5.氯元素在	自然界有 35Cl 和 3	⁷ Cl 两种同位素,	在计	算式:	
34.989×	75.77%+36.966×2	24.23% = 35.453	中()	
A.75.77	%表示 35Cl 的质量	量分数	В	.24.23 表示 ³⁵ Cl	的丰度
C.35.453	表示氯元素的相	对原子质量	Γ	D.39.966 表示 ³⁷ 0	口的质量
6.铜有 ^{6 3} Cu	和 6.5 Cu 两种天然	同位素,铜的平	均近位	以相对原子质量	是 63.5,估算 6.5 Cu 的原
子百分数为		, 63Cu 的质量	百分	数为	
7、下列微料	立的关系中,属于	同位素的是()		
A. 富草	勒烯、石墨	$B.H_2$	$^{2}H_{2}$		
C. 40K	· ⁴⁰ Ca	D.37C1	, 35Cl		
8、据最新排	设道,放射性同位	素 189Ho 可有效》	台疗肝	癌,该放射性同	同位素原子内,中子数与
核外电子数	之差为()				
Α.	32	B. 67	C.	99	D. 166
【提高练习	1				
1、★★★己:	知自然界氧的同位	立素有 ¹⁶ O、 ¹⁷ O、	¹⁸ O,	氢的同位素有	H、D, 从水分子的原子
组成来看		共有			
A 3 和	þ B	6 种	С	9 种	D 12 种
2、★★★己	知某原子的质量数	数和核内中子数 ,	仅此	不能确定	
A. 该元	素的相对原子质	量 B.	该原	子属于哪种元素	<u> </u>
C. 该原	子核内质子数	D.	该原	子核外电子数	
3、 ★★ ★氯	有两种稳定同位刻	素 ³⁵ Cl、 ³⁷ Cl,已	知它们	门的原子个数比	为 3:1,则相对分子质量
为 70、72 和	口74 的三种单质组	分子个数比为:()	
A.6:6:1	B.3:3	1	C.6:3:	1	D.9:3:1
4、★★★ 自	然界中氯化钠是日	白 ²³ Na 与 ³⁵ Cl 和	l ³⁷ Cl	所构成的。已知	1氯元素的相对原子质量
是 35.5,则	11.7g 氯化钠中,	含 ³⁷ Cl 的质量为	p ()	
A.1.5g	B.1.65g	C.1.75g	D.1	.85g	

5.★★★七知 A	元素形成单质	A ₂ 时相对分	子量有3种,	70、	72、	74,	则Aヵ	記素有	种
同位素。									

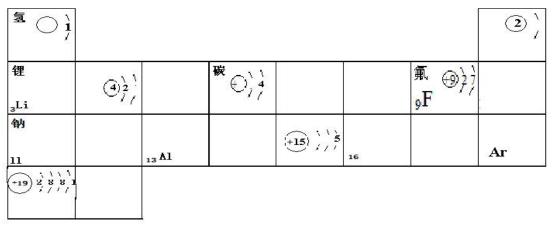
6.★★★★元素 E 的近似相对原子质量为 M,	它有两种同位素原子 ${}^{4}E$ 和 ${}^{4}E$ ($b>a$),	则 aE
在自然界中的丰度为		

7、 $\star\star\star\star\star$ 硼元素的平均原子量为 10.8,则自然界中 ^{10}B 和 ^{11}B 的原子质量比为多少?

第三讲 核外电子排布、电子式

【考查要求】

- I、了解原子核外电子运动状态,理解原子核外电子排布规律
- Ⅱ、学会书写1~20号元素的原子及其对应简单的离子结构示意图、电子式


【知识梳理】

【和你侧理】				
一. 原子核外电子分	层排布的一般	规律		
1、原子中的核外电子	子在	作。	多电子的原子中	电子是分层排布的。
离核最近的电子	层称为	_层,或称为	层,该层上的	的电子所具有的能
量; 能量	高的电子	子在离核	运动。	
2、在含有多个电子的	的原子里,电子	子依分	层排布。其主要	规律是:
(1) 核外电子总是尽	引能排布在_	的电	己子层,然后由 里	望向外,依次排布在能
量逐步升高的电	子层。			
(2) 原子核外各电子	子层最多容纳_	个电子。		
(3)原子最外层电子	子数目不能超过	过 个 (K 层	为最外层时不能	超过个电子)。
(4) 次外层电子数目	目不能超过	个(K 层为次タ	卜层时不能超过_	个),倒数第三层
电子数目不能超	过个。			
3、原子核外电子分层	层排布:第一层	层、第二层、第三	层、第四层的符	号,即电子层能量由
低到高依次为			(用字母表示)	层。
4、参考铝原子的原子	子结构示意图 ,	画出下列原子的	原子结构示意图	和电子式:
	T	²³ ₁₁ Na	$^{27}_{13}Al$	$^{32}_{16}S$
原子结构示意图				
电子式				
● 2e 或 8e 稳定结构			1	
稀有气体元素原	子的最外层电	子排布的特征是_	。在	E一般条件下,稀有气
体元素原子的化学性	上质稳定,很 ⁵	难与其他物质化仓	合,通常把原子	的最外层电子数达到
或的核外电子	排布,称为	结构。		
二、原子结构的表示	方法			
● 电子式: 化学中	常在元素符号	周围用小黑点"."写	戈小叉"×"来表示:	元素原子的电

子,相应的式子叫做电子式

● 原子结构示意图

5、写出 1--20 号元素元素符号、原子符号、原子结构示意图和电子式

● 离子的形成

8、	Cl、Cl ⁻ 的结构示意图分别为、、。	比较两种微
	粒性质的稳定性 ClCl-(填">"、"<"、"="), 其原因是	0
9、	原子失去最外层电子或在最外层得到电子后,不发生变化的是	
1)	元素种类 ②化学性质 ③相对原子质量 ④微粒的电性 ⑤原子核	⑥电子层数
7	最外层电子数 ⑧核外电子数	
	基础练习★★】	
1.	下列所画原子结构示意图正确的是()	
	A. $\bigoplus_{B.} \bigoplus_{D} \bigoplus_{D.} \bigoplus_{D.$)2 }
2.	某微粒的核外电子的数目分别为: K 层 2 个, L 层 8 个, M 层 8 个, 该微粒 A.氢原子 B.钾离子 C.氯离子 D.无法确定	一定是()
3.	下面所列的电子层中能量最低的是() A、K 层 B、L 层 C、M 层 D、N 层	
4.	第四层为最外层时,该电子层最多容纳的电子数目是() A、2 个 B、8 个 C、18 个 D、32 个	
5.	(+x) } 表示某带电微粒的结构示意图,则可用它表示的阳离子共有()
6、	A. 1种 B. 3种 C. 4种 D. 5种 画出下列阳离子、阴离子的结构示意图和电子式:	
Cl-	S ²⁻ F ⁻	_
O ²⁻	Na ⁺ Al ³⁺	
7、	原子核外电子排布的表达方式	

原子符号	核电荷 数	中子数	质量数	原子结构示意图	电子式	各电子层上的电子 数
⁴ ₂ He						
¹² C		6				
	9	10				
₁₄ Si		14				
³⁹ ₁₉ K						
⁴⁰ ₂₀ Ca						

的量为(CI: 核电荷数 17, 元素的相对原子质量为 35.5)(建议课后巩固练习)

B.
$$\frac{n}{A+106.5}(A-N+51)mol$$

C.
$$\frac{n}{4+35.5}(A-N+51)$$
 mol

C.
$$\frac{n}{A+35.5}(A-N+51)mol$$
 D. $\frac{n}{A+106.5}(A-N+47)mol$

【提高练习】

1、★★★元素 X 的原子, 其 M 层与 K 层电子数相同; 元素 Y 的原子, 其 L 层上有 5 个电 子。X和Y所形成的稳定化合物的式量为(

A.100

B.90

C.88

D.80

2、★★★下列原子结构示意图所表示的元素与氩元素的化学性质相似的是()

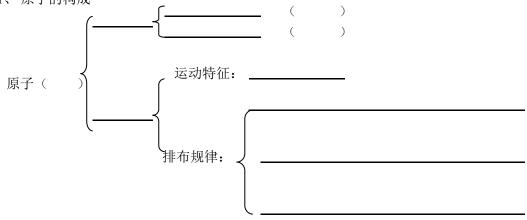
A. $(+6)^{2/4}$ $(+11)^{2/8}$ $(+16)^{2/8}$

3、★★★1993 年 8 月国际原子量委员会确认我国张青莲教授测定的锑原子量(127.760)为标 准原子量,已知锑有两种以上天然同位素,则127.760是()

A.按锑的各种天然同位素的质量数与这些同位素所占的原子百分比计算出来的平均值

C.一个锑原子的质量与 12 C 原子质量的 $1/12$ 的比值 D.锑元素的质量与 12 C 原子质量的 $1/12$ 的比值
4、★★★ X、Y、Z和R分别代表四种元素.如果 aX ^{m+} 、bY ⁿ⁺ 、cZ ⁿ⁻ 、dR ^{m-} 四种离子的电子
层结构相同(a、b、c、d 为元素的原子序数),则下列关系正确的是()
A. a-c=m-n B. a-b=n-m C. c-d=m+n D. b-d=n+m
5、★★★ ²³ ₁₁ Na 分别与 ³⁵ ₁₇ Cl、 ³⁷ ₁₇ Cl(氯的原子量为 35.5)构成的 10g 氯化钠中,含 ³⁷ ₁₇ Cl
的质量是。
6、★★★已知自然界中铱有两种质量数分别为 191 和 193 的同位素,而铱的平均原子量为
192.22,这两种同位素的原子个数比应为()
A.39: 61 B.61: 39 C.1:1 D.39: 11
7、★★★★以下表示氦原子结构的化学用语中,对电子运动状态描述最详尽的是()
A. He: B. C. $1s^2$ D.
8、★★★★化学科学需要借助化学专用语言描述,下列有关化学用语正确的是()
A. CO ₂ 的电子式 : Ö: Ö: Ö: B. Cl ⁻ 的结构示意图 (+17)
C. 乙烯的结构简式 C_2H_4 D. 质量数为 37 的氯原子 $\frac{1}{37}$ Cl
9、★★★★下列有关物质结构的表述正确的是()
A. 次氯酸的电子式 H:Cl:Ö: B. 二氧化硅的分子式 SiO ₂
C. 硫原子的最外层电子排布式 $3s^23p^4$ D. 钠离子的结构示意图 $+10^2281$
10. ★★★★下列电子式中错误的是()
A Na ⁺ B [$: 0: H$] ⁻ C $: H$ D $: 0: H$

B.按锑的各种天然同位素的原子量与这些同位素所占的原子百分比计算出来的平均值


第四讲 原子结构综合应用

【学习目标】

- I、知道原子的结构 II、理解同位素概念,了解同位素的常见引用
- Ⅲ、知道原子核外电子排布规律 Ⅳ、理解相对原子质量

【知识复习】

1、原子的构成

2、几个重要关系式

构成原子或离子的微粒间的数量关系

- (1)质子数 核电荷数 原子核外电子数
- (2) 离子电荷=质子数 核外电子数
- (3) 质量数 (A) = 质子数 (Z) 中子数 (N)
- (4) 质子数(Z) = 阳离子的核外电子数 阳离子的电荷数
- (5) 质子数(Z) = 阴离子的核外电子数 阴离子的电荷数
- (6) 质量数在数值上 该同位素相对原子质量
- 3、是什么是同位素?
- 4、什么是原子的相对原子质量?元素的相对原子质量? 什么是原子的近似相对原子质量?元素的近似相对于原子质量?

【知识整理】

1. 元素、同位素比较

	元素	核素	同位素
概念	具有相同的	具有相同数目的质子	数相同而不同的同一元
念	同一类原子的总称	和一定数目的中子的	素的原子或同一元素的不同核素
		一种原子	
范	宏观概念,对同类	微观概念,对某种元	微观概念,对某种元素的原子而言。因
围	原子而言, 既有游	素的一种原子而言	同位素的存在而使原子种类多于元素
	离态又有化合态		种类
	主要通过形成的的	不同的核素可能质子	同位素质量数同,化学性质同;
	单质或化合物来体	数相同或中子数相	天然同位素所占原子百分含量一
特性	现	同,或质量数相同、	般: 同位素构成的化合物如 H ₂ O、
		或各类数均不相同	$D_2O \setminus T_2O$
			物理性质,但化学性质
实	Н, О	¹ H (氕 H)、 ² H (氘	¹ H (氘 H)、 ² H (氘 D)、 ³ H (氚 T)、
例		D)、 ³ H (氚T)	为 H 的同位素

2.同位素、同素异形体比较

	同素异形体	同位素
概念	互为同素异形	
	体	
存在范围	在无机物单质之间	在原子之间

3.元素相对原子质量、近似相对原子质量、质量数、同位素相对原子质量

氯元素的同位素	³⁵ Cl	³⁷ Cl
质量数		
同位素相对原子质量	34.699	36.966
原子百分组成	75.77%	24.23%
氯元素相对原子质量		
元素的近似相对原子质量		

4、核外电子排布规律

(1) 电子层与电子亚层

核外电子因能量不同而在与核距离不同的电子层运动,用 K、L、M、N 、O 、P 、Q 等表示;其中不同电子层的能量顺序为: E_K E_L E_M E_N E_O E_P E_Q

每一层中运动的电子数目最多为(最外层最多只能容纳个电子;次外层最
多只能容纳个电子;倒数第三层最多只能容纳个电子)。
(2)、能量最低原理:电子的排布总是尽先进入能量的轨道,只有当能量的轨
道占满后,电子才依次进入能量的轨道,原子的电子排布总是使整个原子的能量处于
最
【基础练习★★】
1 、某元素原子的质量数为 A,它的离子 X^{n+} 核外有 y 个电子, Wg 这种元素的原子核内的
中子数为
$\text{A.} \frac{\underline{A}(\underline{A}-\underline{y}+\underline{n})}{\underline{W}} \text{mol} \qquad \text{B.} \frac{\underline{W}(\underline{A}+\underline{y}-\underline{n})}{\underline{A}} \text{mol} \qquad \text{C.} \frac{\underline{W}(\underline{A}-\underline{y}+\underline{n})}{\underline{A}} \text{mol} \qquad \underline{D.} \frac{\underline{W}(\underline{A}-\underline{y}-\underline{n})}{\underline{A}} \text{mol}$
2、下列说法正确的是
①氘和氚是质量数不同,质子数相同的氢的两种元素②氢元素是指 ^{1H} ; ③ ^{1H} 、 ^{2H} , ³ H是
氢的三种同位素,是同一种元素的三种原子; ④ ^{²H} 、 ^{³H} 的化学性质几乎完全相同
A.23 B.34 C.134 D.234
3、下列各组粒子中属于同位素的是
A. ¹⁶ O 和 ¹⁸ O B. H ₂ O 和 D ₂ O C. H ₂ 和 D ₂ D. ²⁴ Mg 和 ²⁴ Na
4、下列说法中正确的是
A. 两个质子数和电子数都相同的微粒,一定是同一种元素的原子
B. 原子的最外层有 12 个电子的元素都是活泼的金属元素
B. 原子的最外层有 12 个电子的元素都是活泼的金属元素 C. 原子核外每个电子层最多容纳的电子数是 2n ² 个
C. 原子核外每个电子层最多容纳的电子数是 2n ² 个
C. 原子核外每个电子层最多容纳的电子数是 2n ² 个 D. 同一元素的各种同位素的物理性质、化学性质都相同 5、原子的第 n 电子层属于最外层电子层时,最多容纳的电子数目与 n-1 层相同,当它属于
C. 原子核外每个电子层最多容纳的电子数是 2n ² 个 D. 同一元素的各种同位素的物理性质、化学性质都相同 5、原子的第 n 电子层属于最外层电子层时,最多容纳的电子数目与 n-1 层相同,当它属于次外层时,最多容纳的电子数比 n+1 层最多容纳的电子数多 10 个电子,则此电子层是
C. 原子核外每个电子层最多容纳的电子数是 2n ² 个 D. 同一元素的各种同位素的物理性质、化学性质都相同 5、原子的第 n 电子层属于最外层电子层时,最多容纳的电子数目与 n-1 层相同,当它属于次外层时,最多容纳的电子数比 n+1 层最多容纳的电子数多 10 个电子,则此电子层是 A. K.层 B. L.层 C. M.层 D. N.层
C. 原子核外每个电子层最多容纳的电子数是 2n²个 D. 同一元素的各种同位素的物理性质、化学性质都相同 5、原子的第 n 电子层属于最外层电子层时,最多容纳的电子数目与 n-1 层相同,当它属于次外层时,最多容纳的电子数比 n+1 层最多容纳的电子数多 10 个电子,则此电子层是 A. K层 B. L层 C. M层 D. N层 6、某原子的原子核外有三个电子层,最外层电子数是 4,该原子核内的质子数是
C. 原子核外每个电子层最多容纳的电子数是 2n²个 D. 同一元素的各种同位素的物理性质、化学性质都相同 5、原子的第 n 电子层属于最外层电子层时,最多容纳的电子数目与 n-1 层相同,当它属于次外层时,最多容纳的电子数比 n+1 层最多容纳的电子数多 10 个电子,则此电子层是 A. K层 B. L层 C. M层 D. N层 6、某原子的原子核外有三个电子层,最外层电子数是 4,该原子核内的质子数是 A. 14 B. 15 C. 16 D. 17
C. 原子核外每个电子层最多容纳的电子数是 2n²个 D. 同一元素的各种同位素的物理性质、化学性质都相同 5、原子的第n电子层属于最外层电子层时,最多容纳的电子数目与 n-1 层相同,当它属于次外层时,最多容纳的电子数比 n+1 层最多容纳的电子数多 10 个电子,则此电子层是A. K层B. L层C. M层D. N层 6、某原子的原子核外有三个电子层,最外层电子数是 4,该原子核内的质子数是A. 14B. 15C. 16D. 17 7、下列说法正确的是A. 同种元素的质子数必定相同B. 核外电子排布相同的微粒其化学性质一定相同
C. 原子核外每个电子层最多容纳的电子数是 2n² 个 D. 同一元素的各种同位素的物理性质、化学性质都相同 5、原子的第 n 电子层属于最外层电子层时,最多容纳的电子数目与 n-1 层相同,当它属于次外层时,最多容纳的电子数比 n+1 层最多容纳的电子数多 10 个电子,则此电子层是 A. K层 B. L层 C. M层 D. N层 6、某原子的原子核外有三个电子层,最外层电子数是 4,该原子核内的质子数是 A. 14 B. 15 C. 16 D. 17 7、下列说法正确的是 A. 同种元素的质子数必定相同 B. 核外电子排布相同的微粒其化学性质一定相同 C. 质子数相同的微粒必定属于同一元素 D. 不同元素的原子质量数必定不同

- A. 钠原子核内必有 11 个中子 B. 钠原子核内必有 11 个电子
- C. 钠原子核外还有 11 个电子
- D. 钠原子必带 11 个正电荷

10、完成下表:

原子符号	名称	质子数	中子数	电子数
¹² 6C				
$^{24}_{12} Mg^{2+}$				
³⁵ 17Cl-				
⁴⁰ 20Ca				

【提高练习】

1、★★★已知一个 SO_2 分子的质量为 xKg,一个 SO_3 的分子质量为 ykg,假设两种分子中 硫原子、氧原子具有相同的中子数,若以硫原子质量的 1/32 作为相对原子质量的标准,则 SO₂的相对分子质量可表示为

A. y-x

2、★★★正电子、负质子等都属于反粒子,它们跟普通的电子、质子的质量、电量均相等, 而电性相反。科学家设想在宇宙的某些部分可能存在完全由反粒子构成的-----反物质。1997 年年初和年底,欧洲和美国的科研机构先后宣布:他们分别制造出9个和7个反氢原子。 这是人类探索反物质的一大进步。你推测反氢原子的结构是

- A. 由1个带正电荷的质子与1个带负电荷的电子构成.
- B. 由 1 个带负电荷的质子与 1 个带正电荷的电子构成.
- C. 由1个不带电荷的中子与1个带负电荷的电子构成.
- D. 由 1 个带负电荷的质子与 1 个带负电荷的电子构成
- 3、★★★ 科学家最近合成出了第 112 号元素, 其原子的质量数为 277, 这是迄今已知元素 中最重的原子。关于该元素的叙述正确的是
- A、其原子核内中子数和质子数都是 112 B、其原子核内中子数为 165, 核外电子数为 112
- C、其原子质量是 ¹²C 原子质量的 277 倍 D、其原子质量与 ¹²C 原子质量之比为 277:12
- 4、★★★ X 元素原子的质量数为m,核内中子数为n,则wg x ⁺含有电子的物质的量是

A, (m-n) w / mmol B, (m-n-1) w / mmol

	C,	(111 + 11)	W / I	1111101	D, (III — II + I	L / W / III	ШОІ		
5、	**	★★己知碳~	有两种	常见的同位	立素 ¹² C、	¹³ C; 氧石	有三种常见	.的同位素	[€] ¹⁸ O、 ¹⁷ C)、 ¹⁶ O
由	这五	种微粒构成	的二氧	〔化碳分子	中,其式	量最多可	能有			
	Α.	6 种	В.	10种	С.	1 1 种	D. 1	2 种		
6,	**	★★ 与 OH	-具有	相同质子数	女和电子数	数的微粒是	큰			
	Α.	F^{-}		B. NH ₃		C. H ₂ C)	D. Na	a^+	
7、	**	★★微粒 RC	D _m 中	共有n个目	担子,R f	的质量数为	ja,则R	原子核中	的中子数	为
	Α.	a+x-n+8	8m	В. а-х-	-n-8m	C. a-	x-n+8m	D. a-	-x+n-8	m
8,	**	★★有 A、E	3、C、	D、E 五和	元素,它	它们的核电	荷数依次	增大,且	均小于 20	。其中
C,	. E 是	是金属,A、	E的最	最外电子层	都只有1	个电子,	B、D 元素	景原子最 夕	卜层电子数	女相同:
且	B元	素 L 层电子	一数是	K 层的 3 化	音,C 元	素最外层時	电子数是 D	的最外层	层电子数的	9一半。
口	答									
(1) 怎	5出它们的元	亡素符	号: A	_ B	C	D	E	° _	
(2) 写	B 原子的 🛭	电子式			_°				
(3)	山 C 元素	离子的	结构示意图	<u></u>			,		

(4) 写出与 E 元素离子具有相同电子排布的 2 个微粒的符号_____和___。

第五讲 物质的量及计算

【考查要求】

I、掌握物质的量、摩尔质量、质量之间的计算 II 、了解阿伏加德罗常数的含义
III、理解摩尔质量的概念及摩尔质量与相对原子质量、相对分子质量之间的关系
【初高中衔接】
1、物质的量与摩尔
物质的量是国际单位制中7个基本量之一,常用符号表示,单位名称是,单
位的符号是,通常用于微观粒子 :分子、原子、离子、电子 等的研究。
物质的质量(g) 微粒数
物质的量(mol) = $\frac{\sqrt{g}}{\sqrt{g}}$ = $\frac{\sqrt{g}}{\sqrt{g}}$ = $\frac{\sqrt{g}}{\sqrt{g}}$ 物质的摩尔质量(g/mol) 阿佛加德罗常数 N_A (6.02×10 ²³ /mol)
2、 摩尔是表示的单位,每摩尔物质都含有
①摩尔使用仅限于微观粒子(分子、原子、离子、质子、中子、电子等),
用于宏观物质则无意义。
②使用时要用化学式指明微粒种类或其组合。
例如: 1mol S 1mol H ₂ 1mol Na ⁺ 1mol e 1mol CO ₂
③下列表述是否正确?
A 1mol 氢或氧或氯或氮 B 2mol 氢离子 C 1mol 氢原子 D 1molNaOH
3、阿伏加德罗常数
①定义:
符号 约为
②1mol 任何 <u>粒子</u> 集合中都含有
③物质的量(n)与阿伏加德罗常数(NA)微粒数(N)之间的关系:
4、摩尔质量
定义
单位

例: Na 的摩尔物质为_____g/mol, H₂SO₄ 的摩尔物质为_____g/mol。

摩尔质量在数值上等于该微粒的______

OH ⁻ 摩尔物质	5为g	/mol NO3 摩	图尔物质为_	g/mol
1mol 微粒质量与微粒	式量的关系			
()	()	
5.质量		为量	<u> </u>	微粒数
()	()	
6. 质量为 m 的 H ₂ ¹⁸ O	和 T ₂ ¹⁶ O 分子	中,中子的个数	分别为	°
质子的个数分别为_		。质	量数分别为	
7. 不同物质中微粒数	的比较			
● 3.6g H ₂ O 与 0.1m	ol的 H ₂ SO ₄ 的	分子数之比是_	; <u></u> ;	瓦原子数之比是 ;
质子数之比是		子数之比是	o	
• 3.6g H ₂ ¹⁸ O 与	mol的H ₂ S	O ₄ 含有相同的分	}子数,与	g 的 H ₂ SO ₄ 含有相同的
氧原子数;				
● 1.42g Na ₂ SO ₄ 溶 ⁻	. σ	水中, 使水分子	子与 Na+的个	· 数之比是 100·1
8、方程式相关计算	·	7,7 7 12,7 7,7 7	3 1 to H3 1	<i>y</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
氢气与氧气点燃				
化学方程式:				
微粒含义:			_	
质量含义:			_	
物质的量含义:				
【基础练习★★】				
1. 下列叙述错误的是	: ()			
A. 1mol 任何物质	都含有约 6.02	2×10 ²³ 个原子		
B. 0.012kg ¹² C 含	有约 6.02×10 ²³	个碳原子		
C. 在使用摩尔表:	示物质的量的	单位时,应用化	学式指明粒	子的种类
D. 物质的量是国	际单位制中七个	个基本物理量之	.—	
2. 下列关于阿伏加德	罗常数的说法	正确的是()	l	
A. 阿伏加德罗常数	文是 12g 碳中所	f含的碳原子数		
B. 阿伏加德罗常数	t是 0.012kg ¹² C	C中所含的原子	数	

C. 阿伏加德罗常数是 6.02×10 ²³ / mol	
D. 阿伏加德罗常数的符号为 N _A ,数值为	56.02×10^{23} / mol
3. 相同质量的 SO ₂ 和 SO ₃ 它们之间的关系	是()
A. 所含硫原子的物质的量之比为1:1	B. 氧原子的物质的量之比为 3:2
C. 氧元素的质量比为 5:6	D. 硫元素的质量比为1:1
4.下列物质中质量最大的是(),分子数:	最多的是()
A. 64g SO ₂ B. 3	. 01×10 ²³ 个 N ₂ 分子
C. 0.75mol H ₂ SO ₄ D. 4	g NaOH
5. 1.2mol Cl ₂ 与元素 A 单质完全反应生成 0.	80mol AClx,则 x 值为()
A. 1 B. 2	C. 3 D. 4
6、下列情况中含微粒数目最多的是	
A、1molH ₂ 中的H原子 B	、0.5molOH ^一 中的电子
C、0.6molH ₂ SO ₄ 中的 O 原子 D	、1molNH ₄ +中的质子数
7、下列各组物质中所含原子数目相同的是	
	、9gH ₂ O 和 0.5molCO ₂
e e	、0.1molHCl和 0.1mol He
8、下列物质中,物质的量最多的是	
	、10gCO ₂
	、溶解了 1molNa ₂ SO ₄ 的水溶液中的 Na ⁺
9、下列各组物质中,组成物质分子的物质	
	4℃时 5.4ml 水(水的密度为 1g·cm ⁻³)
	6.02×10 ²³ 个硫酸分子
【提高练习】	
1. ★★★在无土裁培中,配制 1L 内含 0.5m	ol NH4Cl、0.16mol KCl、0.24mol K ₂ SO ₄ 的某营
养液,若用 KCl、NH4Cl 和(NH4)2SO4	· ·三种固体配制,则需此三种固体的物质的量分
别为()	
	B. 0.66mol 0.50mol 0.24mol
	D. 0.64mol 0.02mol 0.24mol
2. ★★★某元素 1 个原子的质量为 a, 1 个	· ¹² C 原子质量为 b,则该元素的这种原子的相
对原子质量是()	
12a 12b	a
•	N _A

3. ★★★ 乙醇(C_2H_6O)水溶液中,当乙醇分子和水分子中氢原子个数相等时,溶液中	1 <u>Z</u>
醇的质量分数为()	
A. 20% B. 50% C. 46% D. 32%	
4. ★★★N _A 表示阿伏加德罗常数的值,下列说法正确的是()	
A. 23gNa 变为 Na ⁺ 时失去的电子数为 N _A	
B. 18g 水所含的电子数为 NA	
C. 8g He 所含的分子数为 NA	
D. 16g O ₂ 与 16g O ₃ 所含的原子数均是 2N _A	
5. ★★★现有 A、B、C 三种化合物,各取 40g 相混合,完全反应后,得到 18.0g B、49	.0g
C、还有 D 生成,已知 D 的式量为 106 。现将 $22.0g$ A 和 $11.0g$ B 反应,能生成 D 的	J物
质的量为()	
A. 1.00mol B. 0.500mol C. 0.275mol D. 0.250mol	
6、★★★含有相同原子个数的 SO ₂ 和 SO ₃ ,其质量比为,摩尔质量比为	_•
物质的量比为,其中所含氧原子个数比为,硫原子个数比为	_
7、★★★★ 3.01×10 ²³ 个 NH ₄ +中,所含电子的物质的量为mol,所含质子的物质的	
为mol, 它与molH ₂ O 具有相同的质量,与molOH-含有相同的电子数,	与
molNa+含有相同的质子数,与g Na+含有相同数目的离子。 8. ★★★★N _A 表示阿伏加德罗常数,下列叙述正确的是()	
A . 等物质的量的 N_2 和 CO 所含分子数均为 N_A	
B. 1.7g H ₂ O ₂ 中含有的电子数为 0.9 N _A	
C. 1mol Na ₂ O ₂ 固体中含离子总数为 4 N _A	
D. 标准状况下, 2.24L 戊烷所含分子数为 0.1 N _A	
9. ★★★★工业上将氨气和空气的混合气体通过铂一铑合金网发生氨氧化反应,若有标	淮
状况下 VL 氨气完全反应。并转移 n 个电子,则阿伏加德罗常数(N_A)可表示为()	
A. $\frac{11.2n}{5V}$ B. $\frac{5V}{11.2n}$ C. $\frac{22.4V}{5n}$ D. $\frac{22.4n}{5V}$	
10.★★★★★已知 32 g X 与 40 g Y 恰好完全反应,生成 m g Q 和 9 g H,在相同条件下,	16
g X 和足量 Y 混合生成 0.25 mol Q 和若干摩的 H,则物质 Q 的摩尔质量应是	
A.122 g·mol ⁻¹ B.63 g·mol ⁻¹ C.126 g·mol ⁻¹ D.163 g·mol ⁻¹	

4的正整数),点烟 最大值可能是	然后充分反应,恢复到常温	,容器内的气体(水蒸	气的体积忽略不计)密度(g/L))
A.6.4	B.9. 6	C.11.2	D.12.8	
12. *****75	ig 某二价金属的氯化物(M	ICl ₂)中含有 3.01×10 ²³	Cl ⁻ ,则 MCl ₂ 的摩尔质量是	
, MCl	2的相对分子质量是	, M 的相对原子质	5量是。	
13. 一定量的氢气	气在氯气中燃烧,所得混	合物用 100mL 3.00mc	l/L 的 NaOH 溶液(密度为	
1.12g/mL)惰	合好完全吸收,测得溶液中	中含有 NaClO 的物质的	的量为 0.0500mol。	
(1) 原 Na	OH 溶液的质量分数为			
(2) 所得消	容液中 Cl ⁻ 的物质的量为_	mol		
(3) 所用氯	氯气和参加反应的氢气的 物	勿质的量之比 n(Cl ₂):	$n(H_2) = \underline{\hspace{1cm}}_{\circ}$	

11. ★★★★★常温下,在 10 L 容器中通入 A mol 氢气和 B mol 氧气(A、B 均为小于或等于

第六讲 气体摩尔体积

【考查要求】

- I、理解气体摩尔体积的概念。辨析气体摩尔体积、标准状况下的气体摩尔体积
- II、理解影响物质体积特别是气体体积的因素。
- III、初步掌握标准状况下的气体摩尔体积的有关计算。

【知识梳理】

•	摩尔质量:	的物质的质量叫该物质的摩尔质量,	符号_	,	单位

● 填写下表,计算下列物质的物质的量和体积

物质	温度, 压强	状态	质量(g)	物质的量	密度	体积
Fe		固态	56		7.8 g/cm ³	
Al		固态	27		2.7 g/cm ³	
H ₂ O		液态	18		1.0 g/cm^3	
H ₂ SO ₄		液态	98		1.83 g/mL	
H_2	0℃, 101kPa	气态	2		0.0899 g/L	
CO ₂	0℃, 101kPa	气态	44		1.977 g/L	
O_2	0℃, 101kPa	气态	32		1.429 g/L	

● 决定气体体积大小的因素

①微粒的、	、②微粒间的	(与	有关)③微粒的	
生活中的思考:				

- (1) 一百粒花生与一万粒花生分别堆积在一起,哪堆花生的体积大?为什么?
- (2) 一百粒花生与一百粒米粒分别堆积在一起,哪堆所占的体积更大?为什么?
- (3) 18 克水与 18 克水蒸汽所占的体积哪个更大? 为什么?

从以上生活经验中思考总结,决定物质体积大小的因素有:____、__、__、__。

②在一定温度和压强下,决定不同聚集状态(固态、液态、气态)物质体积的**主要因素**(用"√"表示)

影响因素	微粒的数目	微粒间平均距离	微粒本身大小
固、液态			
气态			

科学测定发现:温度和压强相同时,不同气体分子间的	的平均距离是相等的,思考,1摩尔
任何气体在同温同压下的体积是否相等?	_
说明:	
(1)等物质的量的液体、固体体积大小——主要符	中定于构成它们微粒的,
而、对其体积大小几乎没有影响。。	
(2) 等物质的量气体体积大小——主要决定于	,因为通常情况下,分子
间的平均距离是分子直径的	而分子间的平均距离的大小由
决定,温度升高或压强减小,平均距离,反之》	咸小。但只要是在同温同压下,任何
气体分子间的平均距离。	
● 气体的摩尔体积	
在标准状况下 (1 摩尔 任何 气体(单质、化合物、混
合物等,只要是气体)所占的体积都约是22.4升,这	个体积叫气体的摩尔体积(V_0)单
位: L/mol。	
标准状况可用 表示	
换算方法: ×气体摩尔体积	1 V_0
物质的量(mol) ←	── 气体体积(L)
÷气体摩尔体积	${}^1_{\cdot}$ ${ m V}_0$
● 阿伏加德罗定律	
阿佛加德罗定律——同温同压,相同体积的任何。	气体,都含有的分子
注意:适用范围:;适用条件:、_	、,缺一不可用。
● 阿伏加德罗定律的推论	
(1) 同温同压下不同气体,其体积之比,等于	之比,等于之比
(2) 同温同体积的不同气体,其之比等于_	
(3) 同压同物质的量的不同气体,其之比	:等于之比(微粒数之比)
(4) 同温同物质的量的不同气体,其与_	成反比
(5) 同温同压同体积的不同气体,其之	北等于之比,等于
(6) 同温 同压 同质量的 不同气体其之	北与成反比
(7) 同温 同压 同体积的 不同气体,	_与成正比。
【基础练习★★】	
1、物质的体积由、、、	
气体的体积由、、决定。固作 定。	平时14亿H、代
~_ °	

2、把					
表示,则气体的物质的(n)与体积(V)的关系可表示为 V=					
3、下列说法正确的是					
A 在标准状况下, 1mol 水和 1molH2 的体积都约是 22.4L					
B 把 100gCaCO ₃ 分解可得 CO ₂ 气体 22.4L					
C 若 1mol 某气体的体积为 22.4L,则该气体一定处于标准状况					
D 在标准状况下, 1gH ₂ 和 11.2LO ₂ 的物质的量相等					
4、下列关于气体摩尔体积的几种说法正确的是					
A.22.4 L 任何气体的物质的量均为 1 mol					
B.非标准状况下, 1 mol 任何气体不可能占有 22.4 L 体积					
$C.0.1 \text{ mol } H_2$ 、 $0.2 \text{ mol } O_2$ 、 $0.3 \text{ mol } N_2$ 和 $0.4 \text{ mol } CO_2$ 组成的混合气体在标准状况下的体					
积约为 22.4 L					
D.标准状况下, 1 mol CO 和 1 mol CO2 体积比为 1:2					
5、标准状况下,下列气体含有的分子数最多的是					
A. 36.5g HCl B. 22.4L O ₂					
C. $4g H_2$ D. $0.5 mol SO_2$					
6、标准状况下, $2.8LO_2$ 含有 n 个氧分子,则阿伏加德罗常数的值为					
A. n/8 B.n/16 C.16n D.8n					
7、下列各组物质中所含分子数目一定不相同的是					
A、1gH ₂ 和 16gO ₂ B、9gH ₂ ¹⁸ O 和 0.5molCO ₂					
C、N _A 个CO和22gCO ₂ D、22.4L HCl 和 0.1mol He					
8、如果 ag 某气体中含有的分子数为 b,则 cg 该气体在标准状况下的体积是					
A. $\frac{22.4b}{acN_A}L$ B. $\frac{22.4ab}{cN_A}L$ C. $\frac{22.4ac}{bN_A}L$ D. $\frac{22.4bc}{aN_A}L$					
acN_A cN_A bN_A aN_A					
9、在标准状况下:					
(1) 0.5molHCl 占有的体积是					
(2) 33.6LH ₂ 的物质的量是					
(3) 16gO ₂ 的体积是					
(4) 44.8LN ₂ 中含有的 N ₂ 分子数是					
(5) 某物质的密度为 1.429g/L, 求 16g 该物质含有的分子个数					
【提高练习】					

1.	★★★等物质的量的氢气和氦气任问温问压下具有相等的()					
	A. 原子数 B. 体积 C. 中子数 D. 质量					
2.	★★★下列各物质所含原子数目,按由大到小顺序排列的是()					
	①0.5mol NH ₃ ②标准状况下 22.4L He ③4°C 9mL 水 ④0.2mol H ₃ PO ₄					
	A. 1432 B. 4321 C. 2341 D. 1432					
3. ★★★下列说法正确的是()						
	A. 标准状况下 22.4L/mol 就是气体摩尔体积					
	B. 非标准状况下,1mol 任何气体的体积不可能为 22.4L					
 C. 标准状况下 22.4L 任何气体都含有约 6.02×10²³ 个分子 D. 1mol H₂ 和 O₂ 的混合气体在标准状况下的体积约为 22.4L 						
1	★★★ $0.2g$ H ₂ 、 $8.8g$ CO ₂ 、 $5.6g$ CO 组成的混合气体,其密度是相同条件下 O ₂ 的密度的					
٦.	A. 0.913 倍 B. 1.852 倍 C. 0.873 倍 D. 1.631 倍					
_						
	★★★同温同压下, 某瓶充满 O_2 时为 $116g$, 充满 CO_2 时为 $122g$, 充满气体 A 时为 $114g$					
	则 A 的式量为() A. 60 B. 32 C. 44 D. 28					
6.	★★★在 0°C 1.01×10 ⁵ Pa 下,有关 H ₂ 、O ₂ 、CH ₄ 三种气体的叙述正确的是()					
	A. 其密度之比等于物质的量之比					
B. 其密度之比等于摩尔质量之比 C. 等质量的三种气体,其体积比等于相对分子质量的倒数比						
	D. 等体积的三种气体, 其物质的量之比等于相对分子质量之比					
7.	★★★★ 同温同压下,等质量的 SO_2 和 CO_2 相比较,下列叙述正确的是()					
	A. 密度比为 16:11 B. 密度比为 11:16					
	C. 体积比为 1:1 D. 体积比为 11:16					
8.	★★★★ 24mL H ₂ 和 O ₂ 的混合气体,在一定条件下点燃,反应后剩余 3mL 气体,则原					
	混合气体中分子个数比为()					
	A. 1:16 B. 16:1 C. 17:7 D. 7:5					

9. ★★★★ 混合气体由 N_2 和 CH_4 组成,测得混合气体在标准状况下的密度为 0.821 g/L,
则混合气体中 N ₂ 和 CH ₄ 的体积比为() A. 1:1 B. 1:4 C. 4:1 D. 1:2
10.★★★★ 1mol O ₂ 在放电条件下发生下列反应: 3O ₂ 並电 2O ₃ , 如有 30%O ₂ 转化为 O ₃ ,则
放电后混合气体对 H ₂ 的相对密度是() A. 16 B. 17.8 C. 18.4 D. 35.6
11. $\star\star\star\star\star$ A 气体的摩尔质量是 B 气体的 n 倍,同温同压下,B 气体的质量是同体积
空气的 m 倍,则 A 的相对分子质量为() A. m/n B. 29m/n C. 29mn D. 29n/m
12. $\star\star\star\star\star$ 将乙烯(C_2H_4),一氧化碳、氮气三种气体分别盛放在三个容器中,并保持
三个容器内气体的温度和质量均相等,这三种气体对容器壁所施压强的大小关系是() A. $C_2H_4>CO>N_2$ B. $C_2H_4=CO=N_2$ C. $CO>C_2H_4>N_2$ D. $N_2>C_2H_4>CO$
13. ★★★★★等物质的量的 N_2 、 O_2 、 CO_2 混合气体通过 Na_2O_2 后,体积变为原体积的 $8/9$
(同温同压), 这时混合气体中 N ₂ 、O ₂ 、CO ₂ 物质的量之比为() A. 3: 4: 1 B. 3: 3: 2 C. 6: 7: 3 D. 6: 9: 0
14. ★★★★★PbO ₂ 是褐色固体,受热分解为 Pb 的+4 和+2 价的混合氧化物,+4 价的 Pb
能氧化浓盐酸生成 Cl ₂ ; 现将 1 mol PbO ₂ 加热分解得到 O ₂ , 向剩余固体中加入足量的浓盐酸得到 Cl ₂ , O ₂ 和 Cl ₂ 的物质的量之比为 3: 2, 则剩余固体的组成及物质的量比是 () A. 1: 1 混合的 Pb ₃ O ₄ 、PbO B. 1: 2 混合的 PbO ₂ 、Pb ₃ O ₄ 、PbO C. 1: 4: 1 混合的 PbO ₂ 、Pb ₃ O ₄ 、PbO D. 1: 1: 4 混合的 PbO ₂ 、Pb ₃ O ₄ 、PbO

第七讲 物质的量浓度的计算

【知识梳理】

一. 特	勿质的量浓度:		
定义:	以 1L 溶液里所含溶质的_	来表示的溶液浓度	,叫物质的量浓度。
符号:			
	定义式:		
	物质的量浓度(c)= $\frac{1}{2}$	溶质的物质的量(mol)	
	初灰的里水及(C)—	溶液的体积(L)	
【例是	圆解析 】		
例 1.	1L 溶液中含 1mol NaCl,用	W么, NaCl 物质的量浓度为	mol/L
1L 溶	序液中含 160g CuSO ₄ ,那么。	, CuSO ₄ 的物质的量浓度为	mol/L
在 S.	T.P 状况下,将 22.4LNH ₃ ¾	容于水配成 1L 溶液,那么,]	NH3 的物质的量浓度为 _
	mol/L (注意:非	溶于 1L 水中)	
例 2.	溶质质量——物质的量浓度	廷	
将 2.9	25gNaCl 溶于水中,稀释到	400mL,该 NaCl 的物质的量泡	农度为多少?
例 3.	S.T.P 状况下的气体体积—	——物质的量浓度	
将 3.3	6L(S.T.P)氯化氢气体通入	水中,配成 500mL 盐酸,该盐	酸的物质的量浓度为多少?
例 4.	浓溶液→稀溶液		
	稀释公式: c (*) × V (*) =	= c (希) × V (希) 表示稀释前	· 「后不变
实验室	室需要配置 500mL 2mol/L 的	7稀硫酸,需 18mol / L 的浓码	流酸多少毫升?
例 5.	浓溶液与稀溶液的混合		
	混合公式: C _(*) × V _(*) + C		
	V ₃ 混合前后体积变化忽略	各不计时: V ₃ = V ₁ +V ₂	

混合前后体积变化时: V₃= 混合溶液总质量 / 混合溶液密度

将 200moL 1.00mol/L 的 NaOH 与 300mL 2.00mol/L 的 NaOH 混合,假设混合前后体积变化忽略不计,求混合后溶液的物质的量浓度。

例 6. 质量百分比浓度与物质的量浓度的换算 换算公式:

市售浓硫酸瓶上标有: 98% 密度 1.84g/cm3,该硫酸的物质的量浓度是多少?

例 7. 溶液中离子浓度的计算

0.10mol/L Na₂SO₄溶液中 c (Na⁺) =_____

$$c\left(\mathrm{SO_4}^{2^-}\right) = \underline{\hspace{1cm}}$$

0.20mol/L AlCl₃溶液中 $c(Al^{3+}) =$

$$c (Cl^-) =$$

2.00 mol/L Al₂(SO₄)₃ 溶液中 c (Al³⁺) = ______

$$c\left(\mathrm{SO_4}^{2^-}\right) = \underline{\hspace{1cm}}$$

例 8. 综合思考题

在1L水中溶解了358.4 L(S.T.P)的氯化氢气体,所得溶液的密度为1.19g/cm³,求所得溶液的物质的量浓度。

例 9. 某未知浓度的 NaOH 溶液 50.0mL ,加入 40.0mL 1.2mol/L 的 H_2SO_4 溶液后显酸性,再滴入 2.0mol / LKOH 溶液 3mL 时,恰好完全中和溶液显中性。求 NaOH 溶液的物质的量浓度。

例 10. 25.0mL 某浓度的盐酸与 24.0mL 某浓度的氢氧化钠溶液恰好中和。现先用 0.95g 碳酸钙与上述盐酸反应,再加上 7.4mL 氢氧化钠溶液中和剩余盐酸,恰好完全反应,求: 盐酸与氢氧化钠的物质的量的浓度。

【基础练习★★】

- 1. 在 500ml 溶液中含有 20g 氢氧化钠, 该溶液的物质的量浓度是() B.1 mol / L C.1. 5 mol / L A. 0. 5 mol / L D.2mol / L 2. 配制 0. 5mol / L 氢氧化钠溶液 100ml,需要 4mol / L 的氢氧化钠溶液的体积是(需要水的体积是() A.12.5 ml B.25 m1 C.不能确定 D.87.5 ml E. 75 ml 3. 将 4mol / L 的盐酸 25m1,加水稀释到 100ml,取出稀释液 10ml,其中含 HCl 为() A.0.365 g B.1.46 g C.3.65 g D.36.5 g 4. 将 0.1mol / L 的盐酸 100ml 和 0.3mol/L 的盐酸 400ml 混合浓度是(A.0.2 mol / L B.0.26mol / L C.0.28mol / L D.0.3mol / L 5. 下列各溶液中, Na+离子的物质的量浓度最大的是(A.20m1 0.12mol / L 的磷酸钠溶液 B.10m1 0.5mol/L 的溴化钠溶液 C.50ml 0.2mol / L 的硫酸钠溶液 D.120ml 0.2mol / L 的氢氧化钠溶液
- 7. 将 412.16L (S.T.P) NH3 通入水中配成 1 升溶液, 求其物质的量浓度。

6. 将 25g CuSO₄·5H₂O 溶于水,配成 1 升溶液,求其物质的量浓度。

- 8. 65%的浓硝酸 (ρ =1.4g/cm³) 的物质的量浓度是多少? 要配制 100mL3mol/L 的稀硝酸,需要这种浓硝酸酸多少毫升?
- 9. 求 10mol / L 的盐酸 (ρ=1.16 g/cm³) 的质量分数浓度。

【提高练习】

- ★★★将 1 体积 96%的浓硫酸(ρ=1.84 g/cm³)慢慢加入 4 体积蒸馏水中,并不断搅拌,求稀释后的硫酸的质量分数和物质的量浓度。
 已知混合溶液的ρ=1.84 g/cm³,讨论(1)混合时体积发生变化
- 2.★★★现有硫酸和盐酸的混合溶液 20mL,滴加 0.05mol/L 的氢氧化钡溶液,当加至 20mL 时白色沉淀质量不再增加,加至 60mL 时溶液恰为中性,求原混合溶液中硫酸和盐酸的物质的量浓度。

- 3. ★★★现有三种一元碱,其化学式式量之比为 3:5:7,又知由这三种一元碱组成的混合物其物质的量之比为 7:5:3;此混合物 5.36g 与 50.00mL1.50mol/L 的硫酸溶液恰好中和,求三种一元碱的化学式。
- 4. ★★★某学生把 100g 碳酸钠和碳酸氢钠的混合物与足量盐酸反应,共放出气体 22.4L(S.T.P), 计算混合物中碳酸钠的质量分数。
- 5. ★★★在标准状况下,1 体积水可溶解 700 体积 NH₃,求所得溶液的质量分数和物质的量溶度。

6. ★★★将 5g 胆矾(CuS04·5H₂0)溶于水配成 500ml 溶液,从中取出 25ml 溶液的物质的量浓度是()

A.0.002mol / L

B.0.02mol / L

C.0.04mol / L

D.0.4mol / L

7. ★★★★体积为 Vml、密度为ρg / cm³ 的溶液,含有式量为 M 的溶质 mg,其物质的量浓度、为 c mol / L,质量分数(百分比浓度)为 w%。下列表示式中正确的是()

A. c = (1000 w p)/M

B. m = pVw/100

C. w% = (cM/1000p)%

D. c = 100 m/VM

8. ★★★★在 Vml Al₂(SO₄)₃ 溶液中含 Al³⁺mg,取(V / 4)ml 溶液稀释到 4Vml,则稀释后溶液中 SO₄^{2—}的物质的量浓度是()

A. (125m /9V)mol / L

B. (125m/18V) mol / L

C. (125m/36V) mol / L

D. (125m/54V) mol / L

- 9. ★★★★有 25ml 待测浓度的盐酸溶液,用 25ml 1 mol / L 的氢氧化钠溶液滴定后已呈碱性,再滴入 0.1 mol/L 的硫酸溶液 5 ml 才达到中和。计算该盐酸的物质的量浓度。
- 10. ★★★★将 100 m1 0.2 mol / L 的氯化钡溶液和 100 m1 0.2 mol / L 的硝酸银溶液混合,混合溶液为 200 ml, 求混合溶液中 Cl一、Ba²+、N0₃—的物质的量浓度各是多少?

- 11. ★★★★★将 BaCl₂·xH₂0 的晶体 2.44g 溶于水,配成 100ml 溶液,取此溶液 25m1,跟50m1 0.1mol / L 硝酸银溶液相作用,刚好把 Cl⁻离子沉淀完全。求:
 - (1)2.44g BaCl₂·xH₂0 的物质的量;
 - (2) BaCl₂·xH₂0 的式量;
 - (3) BaCl₂·xH₂0 中 x 的值。

- 12. ★★★★★ 碳酸氢钠俗称"小苏打",是氨碱法和联合制碱法制纯碱的中间产物,可用作膨松剂,制酸剂,灭火剂等。工业上用纯碱溶液碳酸化制取碳酸氢钠。
 - (1) 某碳酸氢钠样品中含有少量氯化钠。称取该样品,用 0.1000mol/L 盐酸滴定, 耗用 盐酸 20.00mL。若改用 0.05618mol/L 硫酸滴定, 需用硫酸_____mL(保留两位小数)。
 - (2)某溶液组成如表一:

化合物	NaCO ₃	NaHCO ₃	NaCl
质量 (Kg)	814.8	400.3	97.3

向该溶液通入二氧化碳,析出碳酸氢钠晶体。取出晶体后溶液组成如表二:

化合物	NaCO ₃	NaHCO ₃	NaCl
质量 (Kg)	137.7	428.8	97.3

计算析出的碳酸氢钠晶体的质量(保留1位小数)

- (3)将组成如表二的溶液加热,使碳酸氢钠部分分解,溶液中 NaHCO₃的质量由 428.8kg 降为 400.3kg,补加适量碳酸钠,使溶液组成回到表一状态。计算补加的碳酸钠质量 (保留 1 位小数)。
- (4)某种由碳酸钠和碳酸氢钠组成的晶体 452kg 溶于水,然后通入二氧化碳,吸收二氧化碳 44.8×10³L(标准状况),获得纯的碳酸氢钠溶液,测得溶液中含碳酸氢钠 504kg。通过计算确定该晶体的化学式。

第八讲 阶段测

物质的量综合练习

【知识复习】

1.构成物质的基本粒子:

3.国际单位制的七个物理量基本单位:

原子——	Н Не	N	O Cl	Fe	Cu 等;
分子——	H ₂ SO ₄ \	H ₂ S	CO_2	SO ₃	、H ₂ O、
H ₂ O ₂ , H ₀	Cl 等;				
离子——					
阴离子:	H-、F-	Cl-	Br- I-	S ²⁻	O ² - N ³ -

量的名称	单位名称	单位符号
长度	*	m
质量	千克(公斤)	kg
时间	秒	s
电流	安[培]	A
热力学温度	开[尔文]	K
物质的量	摩[尔]	mol
发光强度	坎[德拉]	cd

OH-、 HCO₃-、CO₃²-、HSO₃-、SO₃²-、

 NO_3 -, SO_4 ²-, CN-, HS-, NO_2 -, S_2 ²-, C_2 ²-, O_2 ²-

阳离子: K^+ Ba²⁺Ca²⁺Na⁺ Mg²⁺ Al³⁺ Mn²⁺ Zn²⁺Fe²⁺ Sn²⁺ Pb²⁺ H⁺ Cu²⁺ Fe³⁺Hg²⁺ Ag⁺ ; H₃O⁺ NH₄⁺

- 2. 写出下列反应的化学方程式,并说明反应中反应物和生成物粒子数之比。
- (1) NaOH+HCl==_____ 反应物与生成物的粒子个数之比为: _____
- (2) KClO₃ _____ ___ 反应物与生成物的粒子个数之比为: _____
 - 3.关于方程式的计算
 - 差量法
 - 质量的计算
- **例 1:** 加热纯净的氯酸钾及二氧化锰的混合物 15.5 克,至反应完全停止后,冷却、称量,得试管中残留物 10.7 克。求:
 - ①制得氧气多少克?
 - ②10.7 克残留物中含些物质? 各多少克?
- 例 2、有一块锌片插入足量 CuSO₄溶液中,锌片质量减轻了 0.1g, 求:
 - (1)参加反应的锌的物质的量
 - (2) 析出铜的物质的量
 - (3) 生成 ZnSO₄ 的物质的量及质量
 - (4) 溶液的质量是增加了还是减少了

【基础练习★★】

1. 卢瑟福提出原子的	的行星模型的实验	依据是		
A. ¹⁴ C 放射性剪	E B . 铀盐晶	体实验 C. X-射线	战管实验 D. α	粒子散射实验
2. 原子的种类决定	于原子的			
A. 核电荷数	B. 核外电子数	C. 相对原	原子质量 D). 质子数和中子数
3. 元素的化学性质量	主要决定于			
A. 核电荷数	B. 核外电	L子数 C. 中	子数 D). 最外层电子数
4. 下列有关气体体和	识的叙述中,正确	的是		
A. 一定温度和	压强下,各种气态	5物质体积的大小,	由构成气体的]分子大小决定
B. 一定温度和	压强下,各种气态	物质体积的大小,	由构成气体的	分子数决定
C. 不同的气体,	,若体积不同,则]它们所含的分子数	女也不同	
D. 气体摩尔体	积指1摩尔任何气	《体所占的体积约》	为22.4升	
5. 下列叙述错误的是	是			
A. 1mol 任何物	质都含有约 6.02×	1023个原子		
B. $0.012 kg^{12}C$	含有约 6.02×10 ²³ 个	、 碳原子		
C. 在使用摩尔	表示物质的量的单	位时,应用化学式	尤指明粒子的 种	类
D. 物质的量是	国际单位制中七个	基本物理量之一		
6. 如果 1g 硫酸中含	有n个氧原子,则	则阿伏加德罗常数。	是	
A. 2n/49	B. $2n/49 \text{ mol}^{-1}$	C. 49n/2	D. 49	9n/2mol
7 完全由和同休和同	物质的量浓度的N	LOU 滚滴 光庙甘丹	E成正盐.需相同	同物质的量浓度的盐
	70次的主化次的10	IAUI 俗似开使共生		
酸、硫酸、磷酸的		aOn 俗似开议共日		
酸、硫酸、磷酸的	的体积比是()	C.3:2:1	D.1:2:	: 3
酸、硫酸、磷酸的	的体积比是() B.6:2:3	C.3:2:1		
酸、硫酸、磷酸的 A.6:3:2	的体积比是() B.6:2:3	C.3:2:1		
酸、硫酸、磷酸的 A.6:3:2 8.向 10mLNa ₂ SO ₄ 溶剂 度是()	的体积比是() B.6:2:3 夜中加入过量的 B	C.3:2:1 aCl ₂ 溶液得到 1.17	g 沉淀.原溶液 ^巾	
酸、硫酸、磷酸的 A.6:3:2 8.向 10mLNa ₂ SO ₄ 溶液 度是() A.0.5mol/L B.	的体积比是() B.6:2:3 夜中加入过量的 B	C.3:2:1	g 沉淀.原溶液 ^巾	
酸、硫酸、磷酸的 A.6:3:2 8.向 10mLNa ₂ SO ₄ 溶剂 度是() A.0.5mol/L B. 【提高练习】	的体积比是() B.6:2:3 夜中加入过量的 B 1.0mol / L C.2	C.3:2:1 aCl ₂ 溶液得到 1.17 2.0mol / L D.0.	g 沉淀.原溶液 ^r 025mol / L	中 Na+的物质的量浓
酸、硫酸、磷酸的 A.6:3:2 8.向 10mLNa ₂ SO ₄ 溶液 度是() A.0.5mol/L B.	的体积比是() B.6:2:3 夜中加入过量的 B 1.0mol / L C.2	C.3:2:1 aCl ₂ 溶液得到 1.17 2.0mol / L D.0.	g 沉淀.原溶液 ^r 025mol / L	中 Na+的物质的量浓
酸、硫酸、磷酸的 A.6:3:2 8.向 10mLNa ₂ SO ₄ 溶剂 度是() A.0.5mol/L B. 【提高练习】	的体积比是() B.6:2:3 夜中加入过量的 B 1.0mol / L C.2	C.3:2:1 aCl ₂ 溶液得到 1.17 2.0mol / L D.0.	g 沉淀.原溶液 ^r 025mol / L	中 Na+的物质的量浓
酸、硫酸、磷酸的 A.6:3:2 8.向 10mLNa ₂ SO ₄ 溶剂 度是() A.0.5mol / L B. 【提高练习】 1.★★★用 1L0.1mol/h	的体积比是() B.6:2:3 夜中加入过量的 B 1.0mol / L C.2	C.3:2:1 aCl ₂ 溶液得到 1.17 2.0mol / L D.0.	g 沉淀.原溶液 ^r 025mol / L	中 Na+的物质的量浓 3 和 HCO-3 的物质的
酸、硫酸、磷酸的 A.6:3:2 8.向 10mLNa ₂ SO ₄ 溶剂 度是() A.0.5mol/L B. 【提高练习】 1.★★★用 1L0.1mol/L 量浓度之比约为(的体积比是() B.6:2:3 夜中加入过量的 B 1.0mol / L C.2 L 的 NaOH 溶液吸) B.2:1	C.3:2:1 aCl ₂ 溶液得到 1.17 2.0mol / L D.0. k收 0.08molCO ₂ 所 C.2:3	g 沉淀.原溶液 ^r 025mol / L 得溶液中 CO ²⁻ 3 D.3:2	中 Na+的物质的量浓 3 和 HCO-3 的物质的
酸、硫酸、磷酸的 A.6:3:2 8.向 10mLNa ₂ SO ₄ 溶剂 度是() A.0.5mol/L B. 【提高练习】 1.★★★用 1L0.1mol/l 量浓度之比约为(A.1:3	的体积比是() B.6:2:3 夜中加入过量的 B 1.0mol / L C.2 L 的 NaOH 溶液吸) B.2:1	C.3:2:1 aCl ₂ 溶液得到 1.17 2.0mol / L D.0. k收 0.08molCO ₂ 所 C.2:3	g 沉淀.原溶液 ^r 025mol / L 得溶液中 CO ²⁻ 3 D.3:2	中 Na+的物质的量浓 3 和 HCO-3 的物质的

3.3	★★★两种金属	属的混合物粉末	15g,跟足	量盐酸	充分反应后	后,恰好往	得到 11.2LH ₂	(标况),下
	列各组金属不	能构成符合上述	述条件的混	尼合物是	()			
	A.Mg 和 Zn	B.Al 和	Zn	C.Al	和 Fe	D.	Mg 和 Al	
4.	★★★将一定	医质量的 Mg,Z	n,Al 混台	合物与足	.量稀 H₂SC	O ₄ 反应,	生成 H ₂ 2.8I	. (标准状
	况),原混~	合物的质量可能	是()				
	A. 2g	B. 4g	C. 8g	D.	10 g			
5.	★★★ 完全	中和相同体积,	相同物质	的量浓度	度的氢氧化	公钠溶液:	,并使之生成	
	要相同物质	的量浓度的盐	鵔、硫酸、	磷酸的	体积比是()		
	A.6:3:2	B.6:2	: 3	C.3:2	: 1	D.	1:2:3	
6.	★★★ 在 10	0 mL 0.10 mol/l	L的 AgNO	O₃溶液□	卢加入 100	mL 溶有	ī 2.08 g BaCl	2的溶液,
	再加入 100	mL 溶有 0.010	mol CuSO	₄ · 5H ₂ O	的溶液,	充分反应	。下列说法中	口正确的是
	A. 最终得	到白色沉淀和尹	尼色溶液					
	B. 最终得	到的白色沉淀是	是等物质的	量的两和	中化合物的	J混合物		
	C. 在最终	得到的溶液中,	Cl ⁻ 的物质	质的量为	0.02 mol			
	D. 在最终	得到的溶液中,	Cu ²⁺ 的物	质的量剂	x度为 0.10	mol/L		
7.	★★★★ 碳酸	铜和碱式碳酸铯	同均可溶于	盐酸,	转化为氯化	と铜。在	高温下这两种	中化合物均
	能分解成氧	(化铜。溶解 28	.4g 上述混	合物,消	肖耗 1mol/I	. 盐酸 50	00mL。燃烧等	
	述混合物,	得到氧化铜的	质量是()				
	A. 35g	B. 30 g	С.	20 g	D.	15 g		
8.	★★★★现有 2	mol/L 的盐酸和	口硫酸溶液	各 100m	L,分别加	口入等质:	量的铁,反应	立后生成的
	气体在标准状	况下的体积比	为 2:3, 3	 杉加入盐	酸中的铁	的质量.		

9、★★★★将 4 克氢氧化钠加入到 50 克盐酸溶液中恰好完全反应。求:

①盐酸溶液中溶质的质量分数;

②生成氯化钠的质量。

- **10**. ★★★★向 300mL KOH 溶液中缓慢通入一定量的 CO₂气体,充分反应后,在减压低温下蒸发溶液,得到白色固体。请回答下列问题:
- (1)由于 CO_2 通入量不同,所得到的白色固体的组成也不同,试推断有几种可能的组成,并分别列出。
- (2)若通入 CO₂气体为 2.24L(标准状况下),得到 11.9g 的白色固体。请通过计算确定此白色 固体是由哪些物质组成的,其质量各为多少?所用的 KOH 溶液的物质的量浓度为多少?
- 11. ★★★★★取 50mLNa₂CO₃ 和 Na₂SO₄ 的混合溶液.加入过量 BaCl₂ 溶液后得到 14.51g 白 色沉淀.用过量的稀 HNO₃ 处理后沉淀减少到 4.66g.并有气体 CO₂ 放出,试计算 (1)原混合溶液中 Na₂CO₃、Na₂SO₄ 的物质的量浓度 (2)产生标况下气体的体积.

- 12. ★★★★氢氧化钡是一种使用广泛的化学试剂。某课外小组通过下列实验测定某试样中 Ba(OH)₂·nH₂O 的含量。
- (1) 称取 3.50g 试样溶于蒸馏水配成 100mL 溶液,从中取出 10.0mL 溶液于锥形瓶中,加 2 滴指示剂,用 0.100mol/LHCl 标准溶液滴定至终点,共消耗标准液 20.0mL (杂质不与酸反应),求试样中氢氧化钡的物质的量。
- (2) 另取 5.25g 试样加热至失去全部结晶水 (杂质不分解), 称得质量为 3.09g, 求 Ba(OH)2·nH2O 中的 n 值。
- (3) 试样中 Ba(OH)₂·nH₂O 的质量分数为_____。

- 13. ★★★★★黄铜矿(主要成分 CuFeS₂)是提取铜的主要原料
- (1) 取 12. 5g 黄铜矿样品,经测定含 3. 60g 硫 (杂质不含硫),矿样中 $CuFeS_2$ 含量为
- (2) 已知 2CuFcS₂ + 4O₂ → Cu₂S + 3SO₂ + 2FeO (炉流)

产物 Cu₂S 在 1200℃高温下班继续反应:

 $2Cu_2S + 3 O_2 \rightarrow 2Cu_2O + 2 SO_2$

 $2 Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$

假定各步反应都完全,完成下列计算:

- ①由 6 mol CuFeS2 生成 6 mol Cu, 求消耗 O2 的物质的量
- ②6 mol CuFeS₂ 和 14.25 mol O₂ 反应, 理论上可得到多少摩尔铜
- ③6 mol CuFeS2和 15.75 mol O2反应, 理论上可得到多少摩尔铜

第九讲 氧化还原反应的基本概念

【初高中衔接】

1、氢气还原 CuO 方程式:	
2、氧化剂:	还原剂:
「 /m→n -ki xm ▼	

【知识梳理】

- 一. 有关概念:
- 1. 什么叫"氧化"什么叫"还原"?

原子或离子失电子(化合价上升)的过程叫氧化。或称氧化反应。

原子或离子得电子(化合价下降)的过程叫还原。或称还原反应。

氧化还原反应:反应物之间发生电子转移或电子的得失或电子云的偏移的反应。

2. 氧化—还原反应的实质是什么?

实质: 在反应中有电子的得失(或电子对的偏移)

氧化还原反应的表面现象: 是某些元素的化合价在反应前后有变化(升高或降低)

3. 什么叫氧化剂? 常见的氧化剂有哪些?

氧化剂必须具备夺电子的能力,得电子的物质叫氧化剂。常见的氧化剂有:

- (1) 活泼的非金属单质, 例: F2、Cl2 Br2 I2
- (2) 含高价元素的含氧化合物,例: KMnO₄ K₂Cr₂O₇ KNO₃ NH₄NO₃ KClO₃
- (3) 酸根有氧化性的含氧酸,例:HNO3 浓 H₂SO₄ HClO HClO₃ HMnO₄
 - (4) 含有不活泼金属高价阳离子的化合物例: Fe^{3+} Ag^{+} Hg^{2+} Cu^{2+} Sn^{4+}
- 4. 什么叫还原剂?常见的还原剂有哪些?

还原剂必须具备失去电子的能力,失电子物质叫还原剂。常见的还原剂有:

- (1) 活泼金属,例:Na Mg Al Zn Fe
- (2) 含低价元素的化合物, 例: NH₃ H₂S HI
- (3) 某些低价态的氧化物,例:CO SO₂ NO N₂O
- (4) 某些低价含氧酸及其盐,例: H₂SO₃ Na₂SO₃
- (5) 某些低价金属阳离子, 例: Fe²⁺ Cu⁺ Sn²⁺
- (6) 某些非金属单质:例 C

5. 什么是氧化产物和还原产物?

由还原剂失去电子被氧化后得到的产物叫氧化产物。

由氧化剂得到电子被还原后得到的产物叫还原产物。例:

FeS +
$$6HNO_3$$
 \rightarrow Fe(NO₃)₃ + H_2SO_4 + $3NO$ + $2H_2O$

(还原剂) (氧化剂)(酸性介质) (氧化产物) (氧化产物) (还原产物)

【基础练习★★】

)	(氰化还原反应的实质是	١.
--	---	---	-------------------	----

- - A. 得氧和失氧 B. 化合价升降 C. 有无新物质生成 D. 电子的转移

- 2. 下列有关氧化还原反应实质的说法中正确的是()
 - A. 氧化反应的实质就是物质得到氧
 - B. 还原反应的实质就是元素的化合价降低
 - C. 氧化反应的实质是元素的原子失去电子或电子偏离该原子
 - D. 氧化还原反应的实质是一定有氧原子参加的反应
- 3. 下列化学反应中,属于氧化还原反应的是()
 - A. $Na_2CO_3 + CaCl_2 \rightarrow CaCO_3 \downarrow + 2NaCl$
 - B. Fe+CuSO₄→Cu+FeSO₄
 - C. $2NaHCO_3 = \Delta Na_2CO_3 + CO_2 \uparrow + H_2O$
 - D. $CaO + H_2O \rightarrow Ca (OH)_2$
- 4. 下列基本反应中一定是氧化还原反应的是()

- A. 化合反应 B. 分解反应 C. 置换反应 D. 复分解反应
- 5. 下列关于氧化还原反应的说法中正确的是 ()
 - A. 在化学反应中若有一种元素被氧化,则一定是另一种元素被还原
 - B. 在氧化还原反应中, 非金属单质一定是作氧化剂
 - C. 若有两种物质参加的氧化还原反应,一种物质是氧化剂,则另一种物质是还原剂
 - D. 氧化还原反应中, 不一定是所有元素的化合价都发生变化

6.	列有	关实验室制	取气体	的反应中	,其原	理不属于	于氧化还	原反应的	是 ()	
	A.	实验室中用	稀硫酸	与锌粒反	反应制取	′. H ₂				
	В.	实验室中用	高锰酸	钾加热分	解制取	. O ₂				
	C.	实验室中用	浓盐酸	与二氧化	2锰加热	制取 Cl	2			
	D.	实验室中用	稀盐酸	与石灰石	「反应制	取 CO ₂				
7.	下列	反应中,属	于氧化	还原反应	,但水	既不作氧	瓦化剂,	又不作还	原剂的是()
	A.	SO ₃ + H ₂ O	$\rightarrow H_2S$	O_4	В.	2Na ₂ O ₂	+ 2 H ₂ 0	O → 4NaC	OH + O ₂ ↑	
	C.	$2F_2+2H_2O$)→4HF	$+O_2\uparrow$	D.	2 Na+	- 2 H ₂ O-	→ 2 NaOH	$I+H_2\uparrow$	
8.	下列	物质与水反	应中的	氧化剂与	还原剂	的物质。	之比为1	: 1 的是	()	
	A.	F_2	Е	3. Na ₂ O ₂		C.	Mg		D. NO ₂	
9.	下列	关于氧化还	原反应	的叙述错	误的是	()				
	A.	有电子得失	或电子	偏移的反	反应是氧	化还原	反应			
	В.	元素化合价	升高是	被氧化,	含该元	素的物质	质是氧化	心剂		
	C.	还原剂可使	其它物	质还原时	卜,自身	·被氧化				
	D.	能得到电子	的物质	可以作为	氧化剂	J				
10.	人位	本血红蛋白中	Þ含有 ₽	e ²⁺ 离子,	如果说	是食亚硝	酸盐,会	会使人中毒	_手 ,因为亚硝	的酸盐会使
Fe ²	+离子	一转变成 Fe ³⁺	离子,	生成高铁	血红蛋	白而丧	失与 O2 组	吉合的能 力	力。服用维生	E素 C
可约	爰解፯	区硝酸盐的甲	中毒,这	₹说明维生	生素 C 』	具有()			
	A.	酸性		B. 碱性		C	. 氧化性	Ė	D. 还原性	
【 ł	是高纬	东习】								
11.	**	★一些酸在	反应中	可以表现	多重性	质,如口	中和反应	: NaOH-	+HCl→NaC	1+H ₂ O的
反	並中 :	HCI 表现了	酸性,	而实验室	快速制	氯气如:				
2K	MnO	₄ +16HCl (浓)→2KC	1+2MnCl	₂ +5Cl ₂ ↑	+8H ₂ O	的反应中	I HCl 既表	長现了酸性,	又表现了
还见	原性,	请你分析	下列反应	Z中酸的作	乍用					
(1)	Ba(O	H) ₂ +H ₂ SO ₄	→BaSC	0 ₄ ↓+2H ₂ ()		H ₂ SO ₄ 表	现了		
(2)($C_{11} +$	2H2SO4(浓)_		1SO4+SC) ₂ ↑+2E	I ₂ O	まりょう	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		

12. ★★★下列说法错误的是()
A. 化合和分解反应一定是氧化还原反应 B. 化合和分解反应可能是氧化还原反应。
C. 置换反应一定是氧化还原反应 D. 复分解反应一定不是氧化还原反应
13. ★★★下列反应属于氧化还原反应,但水既不作氧化剂也不作还原剂的是()
A. $CO_2+H_2O \rightleftharpoons H_2CO_3$ B. $Cl_2+H_2O \rightleftharpoons HCl+HClO$
C. $3\text{Fe}+4\text{H}_2\text{O}(g) \rightarrow \text{Fe}_3\text{O}_4+4\text{H}_2$ D. $2\text{Na}+2\text{H}_2\text{O}\rightarrow 2\text{Na}\text{OH}+\text{H}_2\uparrow$
14. ★★★下列化学变化中,需加入氧化剂才能实现的是()
A. $C \rightarrow CO_2$ B. $CO_2 \rightarrow CO$ C. $CuO \rightarrow Cu$ D. $H_2SO_4 \rightarrow BaSO_4$
15. ★★★下列变化,需加入还原剂才能实现的是()
A. $NH_4^+ \rightarrow NH_3$ B. $C \rightarrow CO$ C. $SO_2 \rightarrow S$ D. $Cl_2 \rightarrow Cl^-$
16. ★★★在 3Cl ₂ +6KOH→KClO ₃ +5KCl+3H ₂ O 的反应中,其中 Cl ₂ 的作用 ()
A. 氧化剂 B. 还原剂
C. 既是氧化剂又是还原剂 D. 既不是氧化剂又不是还原剂。
17. ★★★人体防"锈"抗衰老从某个侧面来讲主要是抗氧化过程。吸入人体内的氧有 2%转
化为氧化性极强的"活性氧",它能加速人体衰老,被称为"生命杀手",服用含硒元素(Se
的化合物亚硒酸钠(Na ₂ SeO ₃),能消除人体内的活性氧,由此推断 Na ₂ SeO ₃ 的作用是(
A. 作还原剂 B. 作氧化剂
C. 既作氧化剂又作还原剂 D. 既不作氧化剂又不作还原剂
18. ★★★★下列反应中,水只作氧化剂的是 ()
A. $2F_2+2H_2O\rightarrow 4HF+O_2$ B. $2Na+2H_2O\rightarrow 2NaOH+H_2\uparrow$
eherometric constraints $e^{\pm kR}$ C. $2H_2O \rightarrow 2H_2\uparrow + O_2\uparrow$ D. $Na_2O + H_2O \rightarrow 2NaOH$
19. ★★★★下列变化需加入适当还原剂才能实现的反应是()
A. $PCl_3 \rightarrow PCl_5$ B. $MnO_2 \rightarrow Mn^{2+}$ C. $Fe \rightarrow Fe_2O_3$ D. $CO_2 \rightarrow CO_3^{2-}$

20.	★★★★HNO2可作	巨氧化剂和还原剂,	当	它作还原剂	时,产物	可能为下	列中的()
A.	NH ₃	B. N ₂	C.	HNO ₃	I	O. NO ₂		
21.	★★★★试管壁上『	付着的硫可用 CS2 ?	溶解	清洗,也可	倒入热的	NaOH 溶	液将硫除排	卓,其
反	应方程式为 3S+6N	$aOH = \stackrel{\triangle}{=} 2Na_2S +$	⊦Na	$_{2}SO_{3}+3H_{2}C$)。反应中等	氧化剂和油	还原剂的 质	量比
为	()							
Α.	2:7	B. 7:2		C. 2:1		D. 1:	2	
22.	★★★★已知 S 元	素的化合价有一2、	+4	4、+6 等几	.种,Fe 元	素有 0、	+2, +3	价,I
元	素有-1、0、+1、	+5、 +7 价,Mg	3元	素只有 0、-	+2 价,H	元素有 0	1, 0	、 +1
价,	在 S ²⁻ 、Fe ²⁺ 、M	Ig^{2^+} , Fe^{3^+} , S , I	_,]	H ⁺ 几种微粒	1中:			
(1)	只有氧化性的有			_				
(2)	只有还原性的有							
(3)	既有氧化性,又有意	还原性的有 <u></u>			_			
23.	★★★★ 下列微粒:	Fe^{3+} , F^- , MnO_4	4 \	S^{2-} 、 H_2O_2 、	Fe ²⁺ , Na	a ⁺ 、SO ₂ 、	Cu, H ⁺ ,	其中
只	能表现出氧化性的	勺微粒是			_; 只能表	長现出还	原性的微	粒是
	;	既能表现出	氧(化性又能	老 表 现 出	出还原'	性的微	粒 是
		o						

第十讲 氧化还原反应的配平

【知识梳理】

方法:

- 1、判断各元素的化合价
- 2、列出有化合价变化的元素
- 3、求得失电子的最小公倍数
- 4、配平有电子得失的元素的原子
- 5、配平无电子得失的元素的原子或原子团
- 6、配平氢(原子),用氧(原子)来复核

原则:

遵循实验事实遵循质量守恒得失电子守恒

【例题解析】

- 一、配平下列反应方程式,指出氧化剂、还原剂、氧化产物、还原产物,标出电子转移方向及数目
- (1) 完全氧化还原

例 1.
$$KMnO_4+ H_2O_2+ H_2SO_4 \longrightarrow K_2SO_4+ MnSO_4+ O_2+ H_2O_4$$

(2)部分氧化还原

例 2.
$$KMnO_4+$$
 $HCl \longrightarrow KCl+$ $MnCl_2+$ Cl_2+ H_2O

当反应得到 1molCl₂时,则参加反应的 HCl 有_____mol,被氧化的 HCl_____mol (3) 歧化反应

(4)归中反应

氧化产物 ,还原产物 间的物质的量之比为 (5)特殊氧化还原方程式类型: ①离子型 例 5. $Mn^{2^+}+ S_2O_8^{2^-}+ H_2O \longrightarrow MnO_4^-+ SO_4^{2^-}+ H^+$ ②缺项配平 KNO_3+ $FeSO_4+$ \longrightarrow K_2SO_4+ $Fe_2(SO_4)_3+$ NO+ H_2O 例 6. 例 7. 氧化还原反应方程式的自组方法 请将 5 种物质: N₂O、FeSO₄、Fe(NO₃)₃、HNO₃ 和 Fe₂(SO₄)₃ 分别填入下面对应的横 线上,组成一个未配平的化学方程式。指出氧化剂、还原剂、氧化产物、还原产物 【基础练习★★】 1. 氧化还原反应的实质是() A. 氧元素的得与失 B. 化合价的升降 C. 电子的得失或偏移 D. 分子中原子重新组合 2. 下列化学变化中,需加入氧化剂才能实现的是() A. $C \rightarrow CO_2$ B. $CO_2 \rightarrow CO$ C. $CuO \rightarrow Cu$ D. $H_2SO_4 \rightarrow BaSO_4$ 3. 下列反应中氯元素被氧化的是() A. $5Cl_2+I_2+6H_2O\rightarrow 10HCl+2HIO_3B$. $2Cl_2+2Ca$ (OH) $_2\rightarrow CaCl_2+Ca$ (ClO) $_2+2H_2O$ C. $MnO_2+4HCl\rightarrow MnCl_2+2H_2O+Cl_2\uparrow D$. $2NaCl+2H_2O\rightarrow 2NaOH+Cl_2\uparrow + H_2\uparrow$ 4. 下列反应中, 电子转移发生在同种元素之间的是() A. $2H_2S+SO_2\rightarrow 3S+2H_2OB$. $2KMnO_4\rightarrow K_2MnO_4+MnO_2+O_2\uparrow$ C. $2KClO_3 \rightarrow 2KCl + 3O_2 \uparrow D$. $Cu_2O + H_2SO_4 \rightarrow CuSO_4 + Cu + H_2O$ 5. $KMnO_4+$ H_2SO_4+ C-- K_2SO_4+ $MnSO_4+$ CO_2+

6. P+ KOH+ $H_2O \longrightarrow K_3PO_4+ PH_3$

$7.Cu+ HNO_3 \longrightarrow Cu(NO_3)_2 + NO+ H_2O$
【提高练习】
1.★★★有以下反应方程式:
A. $CuO+H_2$ $\stackrel{\triangle}{=}$ $Cu+H_2O$ B. $2KClO_3$ $\stackrel{\triangle}{=}$ $2KCl+3O_2\uparrow$
$C. Cl_2 + 2NaOH \rightarrow NaCl + NaClO + H_2OD. 2FeBr_2 + 3Cl \rightarrow 2FeCl_3 + 2Br_2$
E. $MnO_2+4HCl \rightarrow MnCl_2+Cl_2\uparrow+2H_2OF$. $2NaBr+Cl_2\rightarrow 2NaCl+Br_2$
G. $KClO_3+6HCl\rightarrow KCl+3Cl_2\uparrow+3H_2OH$. $HgS+O_2\rightarrow Hg+SO_2$
按要求将上述化学方程式序号填入相应括号内:
(1)一种单质使一种化合物中的一种元素被还原()
(2)一种单质使一种化合物中的一种元素被氧化()
(3) 同一种物质中一种元素氧化另一种元素()
(4) 同一种物质中,同种元素间发生氧化还原反应()
(5) 不同物质的同种元素间发生氧化还原反应()
(6) 某元素只有部分被氧化或只有部分被还原的反应()
2.★★★KClO ₃ 和浓盐酸在一定温度下,会生成黄绿色的易爆物二氧化氯,变化可表述为
$KClO_3+$ $HCl\rightarrow$ $KCl+$ $ClO_2\uparrow+$ $Cl_2\uparrow+$
1)氧化剂,还原剂。
发生氧化反应的物质是,发生还原反应的物质是。
被氧化的是元素,被还原的是元素。
氧化产物,还原产物。
2)具有氧化性物质的氧化性强弱比较
具有还原性物质的还原性强弱比较
3) 完成并配平方程式,用短线和箭头标出电子转移的方向和数目。
4)产生 0.1 molCl ₂ ,则转移的电子的物质的量为mol,此时参加反应的 HCl 是mol,做还原剂的 HCl 是mol。
5) ClO ₂ 具有很强的氧化性,因此常被用作消毒剂其消毒的效率(以单位质量得到的电子
数表示) 是 Cl ₂ 的

6) 若 12.25 克 KClO ₃ 与足量 HCl 反应,产生标况下 Cl ₂ 3.36 升,则 KClO ₃ 被还原的价态为。
3. ★★★一定条件下硝酸铵受热分解的化学方程式为: 5NH ₄ NO ₃ →2HNO ₃ +4N ₂ +9H ₂ O,
在反应中被氧化与被还原的氮原子数之比为()
A. 5:3 B. 5:4 C. 1:1 D. 3:5
4. ★★★★ A_2 、 B_2 、 C_2 3 种单质和它们离子间能发生下列反应
$2A^-+C_2 \rightarrow 2C^-+A_2 2C^-+B_2 \rightarrow 2B^-+C_2$,若可发生 $2X^-+C_2 \rightarrow 2C^-+X_2$ 不正确的是()
A. 氧化性 B ₂ >C ₂ >A ₂ B. 还原性 X ⁻ >C ⁻ >B ⁻
$C. X_2 与 B^-$ 能发生反应 $D. X_2 与 B^-$ 不能发生反应、
8. ★★★★已知 X_2 、 Y_2 、 Z_2 、 W_2 四种物质的氧化能力为 W_2 > Z_2 > X_2 > Y_2 ,判断下列反应
能发生的是()
A. $2W^{-}+Z_{2}\rightarrow 2Z^{-}+W_{2}$ B. $2X^{-}+Z_{2}\rightarrow 2Z^{-}+X_{2}$
C. $2Y^{-}+W_{2}\rightarrow 2W^{-}+Y_{2}$ D. $2Z^{-}+X_{2}\rightarrow 2X^{-}+Z_{2}$
9. ★★★★根据下列反应判断有关的物质还原性由强到弱的顺序是()
$H_2SO_3+I_2+H_2O \rightarrow 2HI+H_2SO_4$ $2FeCl_3+2HI \rightarrow 2FeCl_2+2HCl+I_2$
$3\text{FeCl}_2+4\text{HNO}_3\rightarrow 2\text{FeCl}_3+\text{NO}\uparrow+2\text{H}_2\text{O}+\text{Fe}(\text{NO}_3)_3$
A. $H_2SO_3>I^->Fe^{2+}>NO$ B. $I^->Fe^{2+}>H_2SO_3>NO$
C. $Fe^{2+}>I^->H_2SO_3>NO$ D. $NO>Fe^{2+}>H_2SO_3>I^-$
【可补充配平练习】:配平下列反应方程式,指出氧化剂、还原剂、氧化产物、还原产物,标出电子转移方向及数目
$1. \underline{\hspace{0.5cm}} Fe_2O_3 + \underline{\hspace{0.5cm}} NaNO_3 + \underline{\hspace{0.5cm}} NaOH \rightarrow \underline{\hspace{0.5cm}} Na_2FeO_4 + \underline{\hspace{0.5cm}} NaNO_2 + \underline{\hspace{0.5cm}} H_2O$
2KIO ₃ +KI+H ₂ SO ₄ \rightarrow K ₂ SO ₄ +I ₂ +H ₂ O
3Fe ₂ O ₃ +NH ₄ Cl \rightarrow _Fe+FeCl ₃ +N ₂ \uparrow +H ₂ O

- 4. ___Zn+_____HNO₃(极稀过量) → ____Zn(NO₃)₂+____NH₄NO₃+____H₂O
- 5. $KMnO_4+KI +H_2SO_4 \rightarrow MnSO_4 +I_2 +KIO_3 +K_2SO_4 +H_2O$
- 6. ___KClO₃+__ HCl(浓) \rightarrow ___KCl+__ ClO₂↑+__ Cl₂↑+____
- 7. $Ca(ClO)_2+$ $HCl\rightarrow$ $CaCl_2+$ $Cl_2\uparrow+$ H_2O
- 8. $H_2S+ H_2SO_4 \rightarrow S\downarrow + SO_2\uparrow + H_2O$
- 9. $KIO_3 + \underline{KI} + \underline{H_2SO_4} \rightarrow \underline{K_2SO_4} + \underline{I_2} + \underline{H_2O}$
- 10. $_MnO_4^- + __Fe^{2^+} + __H^+ = __Mn^{2^+} + __Fe^{3^+} + H_2O$

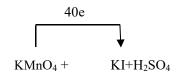
第十一讲 氧化还原反应的计算

【例题解析】

例1 某化学反应的反应物和产物如下:

 $KMnO_4 + KI + H_2SO_4 \rightarrow MnSO_4 + I_2 + KIO_3 + K_2SO_4 + H_2O_4$

- (1) 该反应的氧化剂是
- (2) 如果该反应方程式中 I₂ 和 KIO₃ 的系数都是 5


①KMnO₄的系数是______ ②在下面的化学式上标出电子转移的方向和数目

 $KMnO_4 + KI + H_2SO_4 \rightarrow$

(3) 如果没有对该方程式中的某些系数作限定,可能的配平系数有许多组。原因是

#7 +2 **[解析]** (1) 锰元素化合价从**Mn**变到**Mn**,所以反应中的氧化剂是 **KMnO**₄。

(2) 当 I₂和 KIO₃的系数都是 5 时,10molKI 变成 5molI₂ ,失 10mol 电子,5molKI 变成 5mol KIO₃时,失去 30mol 电子,还原剂总共失去 40mol 电子,氧化剂 KMnO₄中Mn变到Mn,1mol 氧化剂得到 5mol 电子,所以需要 KMnO₄8mol,系数为 8,

(3)该反应有两种氧化产物(即 I_2 和 IO_3 -),两者的比例随氧化剂 $KMnO_4$ 的用量不同可以发生变化。

例 2 NH_4NO_3 — $HNO_3+N_2+H_2O_3$ 在反应中被氧化与被还原的氮原子数之比为()。

A. 5:3 B. 5:4 C. 1:1 D. 3:5

[解析]根据化合价变化可知: N_2 既是氧化产物又是还原产物,则 NH_4NO_3 中 NH_4 的氮原子化合价升高, NO_3 中的氮原子化合价降低,即

由化合价升降总数相等可求出答案为 5:3 答案: A

例 3 根据卜列反应判断有关物质还原性由强到弱的顺序是()
$H_2SO_3 + I_2 + 2H_2O \rightarrow 2HI + H_2SO_4 \qquad 2FeCl_3 + 2HI \rightarrow 2FeCl_2 + 2HCl + I_2$
$3\text{FeCl}_2+4\text{HNO}_3\rightarrow 2\text{FeCl}_3+\text{NO}\uparrow+2\text{H}_2\text{O}+\text{Fe}(\text{NO}_3)_3$
A. $H_2SO_3 > I^- > Fe^{2+} > NO$ B. $I^- > Fe^{2+} > H_2SO_3 > NO$
C. $Fe^{2+}>I^{-}>H_2SO_3>NO$ D. $NO>Fe^{2+}>H_2SO_3>I^{-}$
[解析]根据还原性的比较方法,可以得出:
反应 H ₂ SO ₃ +I ₂ +2H ₂ O→2HI+H ₂ SO ₄ 中,还原性: H ₂ SO ₃ >I ⁻
反应 2FeCl ₃ +2HI→ 2FeCl ₂ +2HCl+I ₂ 中,还原性: I⁻ >Fe ²⁺
反应 3FeCl ₂ +4HNO ₃ →2FeCl ₃ +NO↑+2H ₂ O+Fe(NO ₃) ₃ 中,还原性: Fe ²⁺ >NO
综上正确答案为 A。
例 4 请将 5 种物质: N ₂ O、FeSO ₄ 、Fe(NO ₃) ₃ 、HNO ₃ 和 Fe ₂ (SO ₄) ₃ 分别填入下面对应的模
线上,组成一个未配平的化学方程式。
-+++++H ₂ O
(1) 反应物中发生氧化反应的物质, 被还原的元素是。
(2) 反应中 1mol 氧化剂(填"得到"或"失去")mol 电子。
(3)请将反应物的化学式及配平后的系数填入下列相应的位置中:
□ + □ →
[解析]首先分析所给五个物质中关键元素的化合价:含 Fe(+2 价)的 FeSO ₄ 和含 N(+5)的
HNO_3 应是反应物, 含 $Fe(+3 f)$ 的 $Fe_2(SO_4)_3$ 和含 $N(+1)$ 的 N_2O 应为生成物, 前者是氧化产
物,后者为还原产物。据此写出方程式: FeSO ₄ +HNO ₃ →Fe ₂ (SO ₄) ₃ +Fe(NO ₃) ₃ +N ₂ O+H ₂ O
例 5. 关于反应 K ³⁵ ClO ₃ +6H ³⁷ Cl→KCl+3Cl ₂ ↑+3H ₂ O 的有关叙述中,正确的是(
A. KCl 中含有 ³⁵ Cl B. 生成物 Cl ₂ 的相对分子质量为 73.3
C.该反应转移的电子数为 6e D. 氧化剂和还原剂的物质的量之比为 1: 6

例 6. 如果分别用等物质的量的这些物质氧化足量的 KI,得到 I_2 最多的是($_{\rm B} MnO_4^ _{\rm C} Cl_2$ $_{\rm D} HNO_2$ $_{\Delta} Fe^{3+}$ 例 7. 在反应: 11P+15 CuSO₄+24H₂O →5 Cu₃P+6H₃PO₄+15H₂SO₄,中 7.5molCuSO₄可 氧化磷原子的物质的量为() A.1.5mol B.3mol C.1.6mol D.2.4mol 例 8. 38.4gCu 跟适量的 HNO_3 作用,铜全部反应后,共收集到气体 22.4L(标准状况), 反应消耗的硝酸的物质的量可能是() A.1mol B.2.2mol C.1.6mol D.2.4mol 【基础练习★★】 1.实验室制取少量 N₂ 常利用的反应是 NaNO₂ + NH₄Cl → NaCl + N₂ ↑ + 2H₂O, 正确的是 () A. NaNO2是氧化剂 B. 生成 1mol No 时转移的电子数为 6mol C. NH₄Cl 中的 N 元素被还原 D. N₂ 既是氧化剂又是还原剂 2. 下列各组物质中,通常作氧化剂的是() $A \cdot SO_2 \cdot H_2 \cdot N_2$ B. HNO₃, F₂, KMnO₄ C. CO, Br₂, CO₂ D. HNO₃, FeSO₄, NaClO 3 . 有相同条件下的三个反应:① $2A^{-}+B_{2}=2B^{-}+A_{2}$ ② $2C^{-}+A_{2}=2A^{-}+C_{2}$ ③ $2B^- + D_2 = 2D^- + B_2$, 由此得出,下列判断不正确的是()。 A、氧化性: $A_2 > B_2 > C_2 > D_2$ B、还原性。 $C^- > A^- > B^- > D^ C.^{2}A^{-} + D_{2} = 2D^{-} + A_{2}$ 该反应可以进行 $D.^{2}C^{-} + B_{2} = 2B^{-} + C_{2}$

4. 下列叙述中,可以说明金属甲的活动性比金属乙的活动性强的是() A.在氧化还原反应中,甲原子失去的电子比乙原子失去的电子多。 B.同价态的阳离子,甲比乙的氧化性强。

- C.甲能跟稀盐酸反应放出 H_2 ,而乙不能。
- D.将甲、乙组成原电池时, 甲是负极

 Δ

5.在 MnO₂+4HCl(浓) MnCl₂+Cl₂↑+2H₂O,在反应中起酸性和起还原性作用的 HCl 的物质的量之比是(

A 1: 4 B 1: 2 C 2: 1 D 1: 1

6.在一定条件下,分别以高锰酸钾.氯酸钾.过氧化氢为原料制取氧气,当制得同温.同压下相同体积的氧气时,三个反应中转移的电子数之比为 ()

A.1:1:1 B.2:2:1 C.2:3:1 D.4:3:2

7.X.Y.Z.W.Q 均为含氮的化合物,我们不了解它们的化学式,但知道它们在一定条件下有如下转换关系(未配平): (1) $X \to W + O_2$; (2) $Z + Y + NaOH \to H_2O + W$ (3) $Y + SO_2 \to Z + SO_3$ (4) $Q + Y \to Z + H_2O$ (5) $X + Cu + H_2SO_4(浓) \to Cu^{2+} + Y + SO_4^{2-}$

则这五种化合物中氮的化合价由高到低的顺序为 ()

 $A. \ XYZWQ \qquad \qquad B. \ XZYQW \qquad \qquad C. \ XYWZQ \qquad \qquad D. \ WXZQY$

第十二讲 氧化还原反应综合练习

1. ┐	下列关于氧化还原反应的叙述,正确	确的是 ()
	A. 失去电子的反应是还原反应	B. 失去电子的物质是还原剂
	C. 发生氧化反应的物质是氧化剂	D.作氧化剂的物质不能是还原剂
2. 氢	氢化钙中的氢元素为-1 价,它可用	月作生氢剂,反应的化学方程式是: CaH ₂ +2H ₂ O→
Ca(O	DH)2+2H2↑,在该反应中水的作用	是 ()
	A. 还原剂 B	3. 氧化剂
	C. 既是氧化剂又是还原剂 D	 既不是氧化剂又不是还原剂
3. 身	耒温度下,将 Cl₂ 通入 NaOH 溶液 「	中,反应得到 NaCl、NaClO、NaClO ₃ 的混合液,经
测定	ClO ⁻ 与 ClO ₃ 的浓度之比为 1:3,	,则 Cl ₂ 与 NaOH 溶液反应时被还原的氯元素与被氧
化的	氯元素的物质的量之比为	
	A. 21:5 B. 11:3	C. 3:1 D. 4:1
4.	在一定条件下发生如下反应: 2KC	ClO ₃ +I ₂ →2KlO ₃ +Cl ₂ ,则下列推断正确的是 ()
	A. KClO ₃ 发生氧化反应	B. 该反应中 KClO ₃ 被还原为 Cl ₂
	C. 该反应中还原剂为 KClO ₃	D . 该反应中氧化剂为 I_2
5. 1	$1P+15CuSO_4+24H_2O \rightarrow 5Cu_3P+6H_3P$	PO ₄ +15H ₂ SO ₄ 反应中,被氧化的 P 原子与被还原的 P
原子	个数比是 ()	
	A. 6:5 B. 5:6	C. 11:5 D. 11:6
6.相	艮据下列反应的化学方程式,判断·	有关物质的还原性强弱顺序是 ()
	$I_2+SO_2+2H_2O \longrightarrow H_2SO_4+2HI$	
	$2FeCl2+Cl2\rightarrow 2FeCl3 \qquad 2FeCl3+2$	$2HI \rightarrow 2FeCl_2 + 2HCl + I_2$
	A. $I^{-} > Fe^{2+} > Cl^{-} > SO_2$	$B.Cl^{-}>Fe^{2+}>SO_2>I^{-}$
	C. $Fe^{2+}>I^->Cl^->SO_2$	$D.SO_2 > I^- > Fe^{2+} > C1^-$
		$1 + B_2 \rightarrow 2B^- + A_2$ $2 + B_2 \rightarrow 2A^- + C_2$ $3 + B_2 \rightarrow 2A^- + C_2$
	2D ⁻ +B ₂ 由此可以判断 (
	A. 氧化性: A ₂ >B ₂ >C ₂ >D ₂	´B. 还原性: C ⁻ >A ⁻ >B ⁻ >D ⁻
	U. ZA TD?→ZD TA? 収以巡りり	以进行 D. 2C¯+B₂→2B¯+C₂该反应不能进行

8. 已知在酸性溶液中,卜列物质氧化 KI 时自身发生如卜变化: $Fe^{3+} \rightarrow Fe^{2+}$; $MnO_4^- \rightarrow Mn^{2+}$;
$Cl_2 \rightarrow 2Cl^-$; $HNO_2 \rightarrow NO$, 如果分别用等物质的量的这些物质氧化足量的 KI, 得到 I_2 最
多的是()
A. Fe^{3+} B. MnO_4 C. Cl_2 D. HNO_2
9. 某强氧化剂 XO(OH)2 ⁺ 被亚硫酸钠还原到较低价态。如果还原 2.4×10 ⁻³ mol XO(OH)2 ⁺ 的
溶液到较低价态,需用 30 ml 0.2 mol/L 的 Na_2SO_3 溶液,那么 X 元素的最终价态为(
A. +2 B. +1 C. 0 D1
10. 在 100mL 含等物质的量 HBr 和 H_2SO_3 的溶液中通入 $0.01molCl_2$,有一半 Br^- 变为 Br_2
(已知 Br_2 能氧化 H_2SO_3),原溶液中 HBr 和 H_2SO_3 的浓度都等于 (
A. $0.0075 \text{mol} \cdot \text{L}^{-1}$ B. $0.0018 \text{mol} \cdot \text{L}^{-1}$ C. $0.075 \text{mol} \cdot \text{L}^{-1}$ D. $0.08 \text{mol} \cdot \text{L}^{-1}$
-1
11. 用 0.1 mol / L 的 Na ₂ SO ₃ 溶液 30 mL,恰好将 2×10 ⁻³ mol 的 XO ₄ 还原,则元素 X 在还
原产物中的化合价是 ()
A. +1 B. +2 C. +3 D. +4
12. 配平下列化学方程式:
13. 完成并配平下列化学方程式:
14. 完成并配平化学方程式(在空格内填入系数或化合物的分子式)。
$\ \ \ \ \ \ \ \ \ \ \ \ \ $
15. 配平下列化学方程式,将系数填在括号内。
[$]Cu_2S+[$ $]HNO_3=[$ $]Cu(NO_3)_2+[$ $]NO+[$ $]H_2SO_4+[$ $]H_2O$
16. 配平以下氧化还原反应方程式:

H_2CO_4+ $KIMnO_4+$ $H_2SO_4 C$	O_2+ K_2SO_4+ $MnSO_4+$ H_2O
当 KMnO ₄ 消耗 0.05 mol 时,产生的 CO ₂ 的体	和为L(标准状况)。
17. 在下列化学方程式中指出氧化剂和还原剂,氧化剂	产物和还原产物
(1) $3S+6KOH \rightarrow K_2SO_3+K_2S+3H_2O$	(2) $S+2KNO_3+3C \rightarrow K_2S+N_2+3CO_2$
氧化剂还原剂	氢化剂还原剂
氧化产物还原产物 氧	化产物还原产物
(3) $3Cu+8HNO_3 \rightarrow 3Cu(NO_3)_2+2NO+4H_2O$	(4) $4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$
氧化剂还原剂 氧	化剂还原剂
氧化产物还原产物 氧	化产物还原产物
18. 下列微粒: Fe、Cl ⁻ 、H ⁺ 、F ₂ , 其中能得到电	子的微粒有,该元素的化合
价	剂,具有还原性的微粒是,
它们在反应中(填得或失)电子,发	生反应(填氧化或还原),
其化合价。	
19. 反应 2KMnO ₄ +16HCl→2MnCl ₂ +2KCl+5Cl ₂ ↑+	8H ₂ O 中,氧化剂是,还原
剂是, 若生成 71gCl ₂ ,被氧化的 HCl 是	g。
20. 在 H ⁺ 、Mg ²⁺ 、Fe ²⁺ 、Fe ³⁺ 、S ²⁻ 、I ⁻ 、S 中, 5	?有氧化性的是,只有还原
性的是,既有氧化性又有还原性的是	°
21. 在 KClO ₃ +6 H Cl(浓) → KCl+3Cl ₂ ↑+3H ₂ O 的	豆应中,氧化剂是 ,还原产
物是,得电子与失电子个数比是	,氧化产物与还原产物的质量比
是, 试标出反应电子转移方向和数目	
22. 根据反应 8NH ₃ +3Cl ₂ →6NH ₄ Cl+N ₂ 回答下列问]题。
(1) 氧化剂, 还原剂	
(2) 反应中转移电子数是	
(3) 氧化剂与氧化产物的质量比	
(4) 当生成 28gN ₂ 时,被氧化的物质的质量是	g。

23 某化学反应的反应物和产物	\mathbb{Z} 如下,如果该化学方程式中 \mathbb{S} 和 $\mathbb{H}_2 SO_4$ 的系数分别是 \mathbb{S} 和 \mathbb{S}
(1)请配平下面的化学方程式,	并标出电子转移的方向和数目:

$_$ CuS + $_$ HNO ₃ \longrightarrow Cu(NO ₃) ₂ + $_$ S + $_$ H ₂ SO ₄ + $_$ NO + $_$ H ₂ O
(2)该反应中,发生氧化反应的物质是,
该反应中,发生还原反应的过程是。。
(3)反应中, 1mol 还原剂(选填"得到"或"失去") mol 电子。
(4)如在标准状况下,反应产生 336mL 气体,则转移的电子数为个。
(5)如果没有对该化学方程式中的某些化学计量作限定,可能的配平化学计量数有许多组,
原因是。
24. 氧化还原反应中实际上包含氧化和还原两个过程。下面是一个还原过程的反应式:
$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$
在下列四种物质 $KMnO_4$ 、 Na_2CO_3 、 KI 、 $Fe_2(SO_4)_3$ 中的一种物质(甲)中滴加少量稀硝酸
能使上述还原过程发生。
(1) 写出并配平该氧化还原反应的方程式,标出电子转移的方向和数目
(2)被还原的元素,还原剂是。
(3) 反应生成 $0.3 \text{mol } H_2O$,则转移电子的数目为个。
(4) 若反应后还生成 KIO ₃ ,且其它物质保持不变,则反应中氧化剂与还原剂的物质的量
之比将 (植"增大""减小""不变"或"不能确定")

第十三讲 化学键、离子键、离子化合物

【知识回顾】

	_							
1、原子结构	由原子核和_	两大	部分构成。离	5核越近,该层	层上的电子的	能量越,		
离核越远,	离核越远,该层上的电子的能量越,能量越高,则电子越不稳定。不稳定的电子,在							
化学反应中容易与其他原子中不稳定的电子结合,形成新的化合物。因此,决定元素的化								
学性质的是	原子的		_ •					
2、构成物质	5的微粒有			o				
3、电子式:								
常见微粒的	电子式的书写							
元素	钠	镁	铝	氧	氯	硫		
原子								
离子								
4、原子间相	目互作用时,原	原子趋向稳定	结构的可能途	经有哪些?				
活泼的金属	元素最外层电	子数一般都_	,倾	[向于	; 活泼的非	金属元素最		
外层电子数	外层电子数一般都,倾向于;因此它们之间反应是通过的							
途径来达到	各自稳定结构	的。						

【知识梳理】

为什么仅仅一百多种元素的原子能够形成这么多种形形色色的物质?原子是怎样互相结合的?为什么两个氢原子能自动结合成氢分子,而两个氦原子不能结合在一起?为什么原子间按一定个数比互相结合?......

水加热到 100℃会变成水蒸气;而将水加热到 1000℃以上只有极少量水分解成氢气和氧气。这说明任何微粒之间存在相互作用,有的微粒之间的相互作用比较微弱,如水分子之间存在的相互作用;有的微粒之间的相互作用比较强烈,如水分子内的氢氧原子之间存在的相互作用。我们将相邻的两个或多个原子间的强烈的相互作用称为化学键。

一、离子键

钠在氯气中剧烈燃烧,生成的氯化钠小颗粒悬浮在气体中呈白烟状。试用已经学过的 原子结构的知识,来分析氯化钠的形成过程,并将讨论的结果填入表 1 中。

表1氯化钠的形成

原子结构示意图	通过什么途径达到稳定结构	用原子结构示意图表示				
床 J	超度针公还任应到信定结构	氯化钠的形成过程				
Na						
Cl						

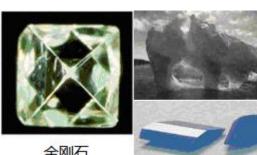
在钠跟氯气的反应中,钠原子的最外电子层的1个电子转移到氯原子的最外电子层上, 从而形成了带正电荷的钠离子(Na+)和带负电荷的氯离子(Cl-)。阴、阳离子通过静电作 用,形成了稳定的化合物。像氯化钠这样,存在于**阴、阳离子之间强烈的相互静电作用**, 叫离子键。含有离子键的化合物称为离子化合物。

离子化合物氯化钠的形成过程,也可以用电子式表示如下:

$$\cdot$$
Na + $\dot{\cdot}$ $\dot{\dot{C}}\dot{\dot{I}}$ \longrightarrow Na + $\dot{\dot{C}}\dot{\dot{I}}\dot{\dot{C}}\dot{\dot{I}}\dot{\dot{C}}$

活泼金属(如钾、钠、钙、镁等)与活泼非金属(如氧、氯、溴等)化合时,都能形 成离子键。离子键无方向性——由于离子电荷的分布是球形对称的,它在任何方向都可以 和带相反电荷的离子相互吸引;无饱和性——离子之间以静电吸引而相互作用,使得每个 离子可以同时与几个相反电荷的离子作用,并在空间的三个方向,继续延伸下去,最后形 成一个巨大的离子型晶体。

[课堂练习]请用电子式表示 K_2S 、 CaF_2 、MgO 的形成过程。


K_2S :	
CaF ₂ :	
ΜσΩ:	

二、离子晶体

什么是晶体? 晶体与固体有什么区 别?

固体分为晶体和非晶体。晶体是指 具有规则的几何外形的固体。它们具有 固定的熔点。

图 1 展示了几种晶体。

金刚石

图 1 几种晶体

浮 冰

胆

根据构成晶体的结构微粒及微粒间作用类型的不同,晶体可分成离子晶体、分子晶体、原子晶体和金属晶体等类型。

离子间通过离子键结合而成的晶体叫做**离子晶体**。在离子晶体中,阴、阳离子按一定 规律在空间排列。下图 2 所示是氯化钠、氯化铯的晶体结构示意图。

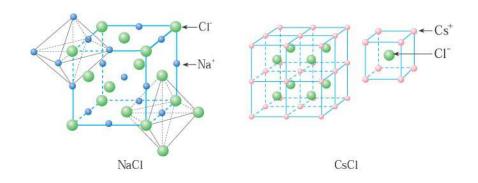


图 2 氯化钠和氯化铯的晶体结构

在氯化钠晶体中,每个 Na⁺离子同时吸引着 6 个 Cl⁻离子,每个 Cl⁻离子同时吸引着 6 个 Na⁺离子。在氯化铯晶体 ,每个 Cs⁺离子同时吸引着 8 个 Cl⁻离子,每个 Cl⁻离子同时吸引着 8 个 Cs⁺离子。在氯化钠或氯化铯晶体中都不存在着单个的 NaCl 分子或单个的 CsCl 分子,因此,NaCl 和 CsCl 只是氯化钠和氯化铯晶体的化学式,而不是分子式。NaCl、CsCl 的化学式表示在这两种晶体中阳离子和阴离子的个数比是 1:1。

离子晶体的特点:熔、沸点较高,硬度较高,不易加工,固体不导电,熔融状态或溶于水能导电。(*硫酸钡水溶液不导电,是因为硫酸钡难溶于水;熔融状态的硫酸钡可导电。)

由于离子键(阴、阳离子之间强烈的静电作用)是较强的化学键,破坏离子键需要足够的能量,离子晶体(离子化合物)比较稳定。

7、离子化合物

- (1) 定义: 含有 的化合物
- (2) 常见的离子化合物有哪几类?

离子化合物: ①强碱 NaOH、KOH、Ba(OH)2......

- ②大部分盐 NaCl、KNO₃、BaSO₄......
- ③活泼金属与活泼非金属组成的化合物 Na₂O、K₂S、Na₂O₂……

[思考] 离子化合物是否一定含有金属元素?

MgCl2中的两个Cl-是否也是以离子键结合的?

[拓展提高]下表是一些离子化合物的电荷、核间距与熔点:

化合物	NaF	NaCl	NaBr	NaI	BeO	MgO	CaO	SrO	BaO
离子电荷	1—1	1—1	1—1	1—1	2—2	2—2	2—2	2—2	2—2
核间距 (nm)	0.230	0.278	0.293	0.317	0.165	0.210	0.240	0.257	0.277
熔点 (℃)	988	801	740	660	2800	2580	2570	2430	1923

	核间距(nm)	0.230	0.278	0.293	0.317	0.165	0.210	0.240	0.257	0.277
	熔点 (℃)	988	801	740	660	2800	2580	2570	2430	1923
L	通过对上达	上数据的	分析,回	答以下	问题:			l		
((1) 你认为哪	些因素景	/响离子	化合物的]熔沸点	?				
((2) 怎样影响	?								0
	∡ 基础练习★★									
1.	两种元素可	以组成A	AB ₂ 型离	子化合物	勿,它们	的原子原	序数可能	是		
	A 11和8	В	6和8	C 7利	和8]	D 12利	19			
2.	下列物质中	,可证则	月某化合:	物内一定		子键的是	1			
	A 可溶于z	水	В	水溶液的	能导电					
	C 具有较清	高的熔点	D	熔融状态	态下能导	电				
3.	下列各组微	粒相互作	F用,结:	果形成喜	哥子键的	是				
	A NH_4^+	OH^-	$B Ag^+$	、NH ₃	C	H^+ S^2	2-	D Ba	2 ⁺ 、SO ₄ ²	2-
4.	下列各组微		_							
	A K ⁺ —Ca									
5.	下列化合物									
	A NaF									
6	在下列化合									
υ.										
7	A CaO				D (cas .				
/.	下列物质中									
	A NH ₄ NO ₂	3 B	$NH_3 \cdot H$	I_2O	C HF	D N	la .			
8.	下列过程能	生成离子	P键的是							
	A 白磷在物	空气中燃	烧 E	等在	空气中逐	渐失去	金属光泽	I		
	C 硫磺在氢	空气中点	燃口	氢碘	酸与氯气	反应				

٦	下列说法正确的是				
A	A Z的熔点较低	B Z可表	示为 X ₂ Y		
C	C Z一定溶于水	D X形成	+2 价阳离子	:	
【提	是高练习】				
10.	★★★下列物质中原	属于离子化合	物的是		
A	A 苛性钾 B 硝	典化氢 C	硫酸 D	醋酸	
11.	★★★下列叙述正确	角的是()			
A. 2	分子是由一定数目的]原子组成的	,原子之间的	的相互作用叫化学银	建
В. В	阴、阳离子通过静电	引力所形成	的化学键叫做	放离子键	
C. =	非金属元素之间构成	的化合物都	不是离子化台	音物	
D. [离子化合物中一定含	有离子键			
12.	★★★下列性质中,	可以说明某	化合物内一	定存在离子键的是	
A	A 可溶于水 B	熔融状态能	导电 C	水溶液能导电	D 能电离出离子
13.	★★★ X、Y、Z、	w 四种主族	元素,若X的	的阳离子与 Y 的阴阳	离子具有相同的电子层
至	结构; W 的阳离子的]氧化性强于	等电荷数的	X 阳离子的氧化性	; Z 阴离子半径大于等
Ħ	电荷数的 Y 的阴离子	半径,则四	种元素的原	子序数由大到小排列	· 利顺序是()
A.	.Z>X>Y>W	B.W>X>Y	√>Z C	X>Z>Y>W	D.Z>Y>X>W
14.	★★★★金属钠和雪	氢气在 300℃	~400℃时能		色的离子化合物 NaH。
N	NaH 具有强的还原性	:。它与水反	应能生成一种	中碱性物质和可燃性	生的气体。试写出:
(1)) NaH 的电子式		;		

(2) 写出 NaH 和 H₂O 反应的化学方程式: _____。

第十五讲 共价键、共价化合物、共价分子

【学习目标】

- 1、理解共价键的概念,学会用电子式表示共价分子的形成过程。
- 2、初步学会常见共价分子的电子式和结构式,初步认识共价键的极性。

_	1 No 124-00	-
•	知识梳理	1
	AH 103 (7)11 JAH	

1、离子键:	是、离子通过		形成的强烈的	相互作用。从成键		
元素分析:活泼(如: K、Na、Ca、Ba等)和活泼				(如: F、Cl、Br、		
0等)	O等)相互结合时形成离子键。从化合物类别来分:大部分、金属对应					
的碱	、性氧化物中存在离子键	0				
下列物质	属于离子化合物的是					
①HCl	NaCl 3MgCl ₂ 4H ₂ O 5N	NH ₄ Cl	O ₄ ⑦BaSO ₄	®C ₂ H ₅ OH		
①Cl ₂						
[总结] 从	物质组成元素上看,离子化合物	勿 一般 含有活泼	金属元素或铵材	艮离子。		
2、填表						
	用电子式表示离子化合物	用电子式	表示离子化合	物的形成过程		
KI						
CaBr ₂						
Na ₂ O						
3、非金属	元素间能形成稳定的物质吗? 请	青 你写出更多物	质的化学式:			
如: 单质:	Cl ₂ ,		_(至少写5种	·);		
化合物	J: 、HCl、H ₂ O、NH ₃ 、CH ₄ 、C	O ₂ 、	;			
4、写出下	4、写出下列原子的电子式:					
H、 C、 Si、 N、						
Ο	、 F、 Cl	s	I			
5、以氯化	5、以氯化氢分子形成为例,分析其形成的过程					
结论:	间通过	_而形成的化学领	建称为共价键。	共价化合物是由		
		66				

5、共价键						
(1) 从成键微粒、	、成键方式、成键本质和成键条件	牛对比离子键和共价键				
	离子键	共价键				
成键微粒						
成键方式						
成键本质	间的静电作用					
成键条件						
(2) 用电子式表表	示共价分子的形成过程:					
用电子式表示	HCl 分子的形成过程					
用电子式表示	HCl 分子					
[小结] 与离子化	合物书写比较,"二不要":不要	加号,不要写。				
[练习 1]						
①用电子式表示 H	I_2 , Cl_2 , N_2					
②写出 CH4、CO2	②写出 CH ₄ 、CO ₂ 、H ₂ O 、HF、NH ₃ 的电子式					
③CCl ₄ 分子的形成类似于 CH ₄ 、CS ₂ 分子的形成类似于 CO ₂ ,写出 CCl ₄ 、CS ₂ 电子式						
【讨论】思考与讨	论					
思考总结: 原子间]形成共用电子对的数目由什么决	定?				
1)	①一个原子形成共用电子对的数目= 达稳定结构所需的					
② 每	4个原子都达到结构。					
(3) 结构式: 在原	成键原子间用短线表示一页	寸				
[练习 2] 请写出	Cl_2 、 H_2O 、 NH_3 、 CH_4 、 C	O_2 、 N_2 的结构式(说明: 离子化合物				
没有结构式)						

键的化合物, 共价化合物中_____间全部是____。

3、共价键的极性:

6. 下列电子式中错误的是

不同的非金属原子吸引电子的能力不相同,导致共用电子对发生偏移,即共用电子对
偏向非金属性的元素,而非金属性弱的元素。根据共用电子对是否发生偏程
将共价键分为极性共价键(简称极性键)和非极性共价键(简称非极性键)
(1) 非极性键:成键时共用电子对发生偏移的。
如 H ₂ 、、、等分子中的共价键是非极性键。
(2) 极性键:成键时共用电子对发生偏移的。
如、、、等分子中的共价键是极性键。
思考: 共价分子中极性键和非极性键的判断方法: 依据共用电子对
①、非极性键:种元素间形成的共价键
②、极性键: 种元素间所形成的共价键
[练习 3] 判断 NH ₃ 、CO ₂ 、CH ₄ 、CCl ₄ 、Cl ₂ 中所有化学键的极性。
【基础练习★★】
1. 下列各组原子序数所示元素,不能形成 AB2型共价化合物的是
A 6和8 B 16和8 C 12和9 D 6和16
2. 下列物质的分子中,共用电子对数目最多的是
A H ₂ B NH ₃ C H ₂ O D CH ₄
3. 下列物质中, 既含有离子键, 又含有共价键的是
A H ₂ O B CaCl ₂ C NaOH D Cl ₂
4. 下列物质中,属于共价化合物的是
A Br ₂ B H_2SO_4 C $(NH_4)_2S$ D $(NH_4)_2SO_4$
5. 下列关于化学键有关说法正确的是
A 化学键存在于原子之间,也存在于分子之间
B 两个原子之间的相互作用叫做化学键
C 离子键是阴、阳离子之间的相互吸引力
D 化学键通常指的是相邻的两个或多个原子之间的强烈的相互作用

A	H :CI: A Na ⁺ B [:O:H] ⁻ C N:H D H:C:H H H
7.	下列各项中表达正确的是
A	$A F^-$ 的结构示意图: Θ_2 B CO_2 的分子模型示意图: \bullet C
(C NaCl 的电子式: Na;CI: D N ₂ 的结构式: : N≡N:
	下列化学式及结构式中,从成键情况看来不合理的是
A	A CH ₃ N $\stackrel{\text{H}}{\underset{\text{H}}{\text{C}}} = \text{N} - \text{H}$ B CH ₂ SeO $\stackrel{\text{H}}{\underset{\text{Se}}{\text{C}}} = \text{O} - \text{H}$ Se CH ₄ S $\stackrel{\text{H}}{\underset{\text{H}}{\text{C}}} = \text{S} - \text{H}$ D CH ₄ Si $\stackrel{\text{H}}{\underset{\text{H}}{\text{C}}} = \text{S} = \text{H}$
(C CH ₄ S H — C — S — H D CH ₄ Si H C— S i H
9. <i>)</i>	用电子式表示下列物质的形成过程
(1)	KI
(2)	$^{\prime\prime}$ MgF $_{2}$
(3)	Na ₂ S
(4)	N ₂
(5)	PCl ₃
(6)	Na ₂ O ₂
【提	高练习】
10.	★★★有 A、B、C 三种元素。已知 5.75g 单质跟盐酸完全反应, 在标准状况下可产
<u>/</u>	\pm 28L 氢气和 0.25 mol ACl _n 。B 的气态氢化物的化学式为 H_2 B,其式量与 B 的最高氧
1	比物的水化物式量之比为 $1:2.88$, B 核内质子数和中子数相等。 C 与 B 可形成 CB_2 液
	态化合物,并能溶解 B 的单质。试回答下列问题:
(1)) A、B、C 的名称分别是, A 离子结构简图为
	B 在元素周期表的位置是。
(2)	用电子式表示 A 与 B 形成化合物的过程
(3)	A ₂ B 含有键,CB ₂ 中含有键。
11.	★★★有 A、B、C、D 四种元素,其最高正价依次是 1、4、5、7,其原子序数按照 B、
(\mathbb{C} 、 \mathbf{D} 、 \mathbf{A} 的次序依次增大。已知 \mathbf{B} 的原子次外层的电子数为 2 , \mathbf{C} 、 \mathbf{D} 、 \mathbf{A} 的原子次外
J	层上的电子数均为 K 层电子数的 4 倍, A 原子的核外电子数不超过 36。试推断:
(1)	A、B、C、D 各是何种元素: A B C;
	69

(2) 表示出 A 与 D、C 与 D (生成的	低价化合物)、B与D形成化合物的电子式:
(3) 写出四种元素的最高价氧化物对	应的水化物的分子式或化学式:、
	, 其中酸性最强的是, 属于强碱的
是。	
12. ★★★★在构成下列物质的微粒中	ı: A 氨气 B 氯化钡 C 氯化铵 D 干冰 E 苛性钠 F
食盐 G冰 H氦气 Ι过氧化钠 J双	氧水 K 氢气
①只有非极性键的是	; ②只有离子键的是;
③只有极性键的是	; 其中又是非极性分子的是。
④既有极性键又有非极性键的是	;⑤既有离子键又有极性健的是;
⑥既有离子键又有非极性键的是	; ⑦无任何化学键的是;
⑧上述物质中存在范德华力的是	•
13. ★★★★叠氮化合物在化学工业」	上有其重要应用。 N_3 一叫做叠氮离子,请写出由三个
原子构成的含有同 N_3	相同电子数的微粒的化学式(三
种)。	
14.★★★★★有下列化合物和单质: (DHBr; ②NaOH; ③KI; ④MgO; ⑤CO ₂ ; ⑥N ₂ ;
⑦NH3; ⑧金刚石	
(1)只存在离子键的是	,只存在共价键的是
既有离子键又有共价键的是	
(2)属于离子化合物的是	
是。属于共价分子	产的是。
③CO ₂ 。	4CH ₄ 。
(1) 根据下列物质的结构式写出相见	应的电子式:
①H—O—Cl。) H—O—O—H。
③[H—0—H] +	H—C≡C—H∘
 H	

第十六讲 化学键综合复习

【复习要点】

● 知识点:离子键和共价键

	非极性共价键	极性共价键
概念	同种元素原子形成的共价键	不同种元素原子形成的共价
		键,共用电子对发生偏移
形成条件	由同种非金属元素组成	由不同种非金属元素组成
通式及示例	A—A、A==A、A≡A,如 Cl-Cl、	A—B、A==B、A≡B
	C=C、N≡N	如 H-Cl、C=O、C≡N
存在	非金属单质,某些共价化合物	共价化合物,某些离子化合物
十二	(H ₂ O ₂),某些离子化合物(Na ₂ O ₂)	(如 NH ₄ Cl、NaOH)
相互关系	非极性键 — <u>电子对偏移</u> → 极性键 — <u>电子对转移</u> → 离子键 (电子对居中) (电子对偏向非金属性强的一方)(电子对完全属于一方)	

● 知识点:离子化合物和共价化合物

项目		离子化合物	共价化合物
概念	Ì	阴、阳离子间通过离子键结合形成	不同元素的原子间通过共价键
		的化合物	结合形成的化合物
化合物中的粒子		金属阳离子或 NH4+、非金属阳离子	分子或原子、没有离子
		或酸根阴离子没有分子	
所含	化学键	离子键,还可能有共价键	只含有共价键
物质	5类型	活泼金属氧化物(过氧化物、超氧	非金属氧化物、非金属氢化物、
		化物)、强碱、大多数盐	含氧酸、弱碱、少数盐大多数有
			机物
实例			
实例	Ŋ	$MgO \ Na_2O_2 \ KO_2 \ Ba(OH)_2 \ $	CO_2 、 SiO_2 、 NH_3 、 H_2SO_4 、
实例	ij	$MgO \ Na_2O_2 \ KO_2 \ Ba(OH)_2 \ MgSO_4 \ Kal(SO_4)_2.12H_2O$	CO ₂ 、SiO ₂ 、NH ₃ 、H ₂ SO ₄ 、 Al(OH) ₃ 、HgCl ₂ 、C ₁₂ H ₂₂ O ₁₁
实例性	状态	` ′	
性		MgSO ₄ 、Kal(SO ₄) ₂ .12H ₂ O	Al(OH) ₃ 、HgCl ₂ 、C ₁₂ H ₂₂ O ₁₁
	状态	MgSO ₄ 、Kal(SO ₄) ₂ .12H ₂ O 通常以晶体形态存在	Al(OH) ₃ 、HgCl ₂ 、C ₁₂ H ₂₂ O ₁₁ 气态、液体或固态
性	状态	MgSO ₄ 、Kal(SO ₄) ₂ .12H ₂ O 通常以晶体形态存在 熔融状态能导电、易溶物质在水溶	Al(OH)3、HgCl2、C12H22O11 气态、液体或固态 熔融状态不导电,易溶物质在水
性	状态 导电性	MgSO ₄ 、Kal(SO ₄) ₂ .12H ₂ O 通常以晶体形态存在 熔融状态能导电、易溶物质在水溶 液里能导电	Al(OH) ₃ 、HgCl ₂ 、C ₁₂ H ₂₂ O ₁₁ 气态、液体或固态 熔融状态不导电,易溶物质在水 溶液里可能导电或不导电
性	状态 导电性 类别	MgSO ₄ 、Kal(SO ₄) ₂ .12H ₂ O 通常以晶体形态存在 熔融状态能导电、易溶物质在水溶 液里能导电 强电解质	Al(OH) ₃ 、HgCl ₂ 、C ₁₂ H ₂₂ O ₁₁ 气态、液体或固态 熔融状态不导电,易溶物质在水 溶液里可能导电或不导电 强电解质、弱电解质或非电解质

小结:

- (1) 当一个化合物中只存在离子键时,该化合物是离子化合物
- (2) 当一个化合中同时存在离子键和共价键时,该化合物也称离子化合物

- (3) 只有当化合物中只存在共价键时,该化合物才称为共价化合物。
- (4) 在离子化合物中一般既含有金属元素又含有非金属元素; 共价化合物一般只含有非金属元素(NH₄+例外)

注意:

- (1)离子化合物中不一定含金属元素,如 NH₄NO₃是离子化合物,但全部由非金属元素组成。
- (2)含金属元素的化合物不一定是离子化合物,如 A1C13 等是共价化合物。

● 知识点: 电子式和结构式的书写方法

一、电子式:

- 1.各种粒子的电子式的书写:
- (1) 原子的电子式:常把其**最外层电子数**用小黑点"·"或小叉"×"来表示。
- (2) 简单离子的电子式:
- (3) 部分化合物的电子式:
- ① 离子化合物的电子式表示方法: 由阳离子和带中括号的阴离子组成。
- ② 共价化合物的电子式表示方法:没有离子,不出现离子和中括号。
- 二、结构式:将分子中的共用电子对用短线表示,而反映分子中原子的排列顺序和结合方式的式子叫做物质的结构式。单双三键分别用—、=、≡表示。

● 知识点: 化学键与晶体的关系

1、晶体类型及性质比较

晶体类型		离子晶体	原子晶体	分子晶体
组成晶体的粒子		阳离子和阴离 子	原子	分子
组成晶体粒子间的相 互作用		离子键	共价键	范德华力(有的还有氢 键)
	典型实例	NaCl	金刚石、晶体硅、 SiO ₂ 、SiC	冰(H ₂ O)、干冰(CO ₂)
晶体	熔点、沸点	熔点较高、沸 点高	熔、沸点高	熔、沸点低
的	导热性	不良	不良	不良
物理特	导电性	固态不导电, 熔化或溶于水 能导电	差	差
性	硬度	略硬而脆	高硬度	硬度较小

2、晶体熔、沸点的判断:

- ①不同类型晶体熔、沸点高低的一般规律为:原子晶体>离子晶体>分子晶体。
- ②同种晶体类型的物质:晶体内粒子间的作用力越大,熔、沸点越高。

原子晶体:熔点:金刚石(C)>石英(SiO2>金刚砂(SiC)>晶体硅(Si)。

离子晶体: 熔点: MgO>MgCl2>NaCl>CsCl。

分子晶体:熔沸点: H2O>H2Te>H2Se>H2S。

*3、用均摊法解析晶体,确定晶体的化学式:

晶胞是晶体中的最小重复单位。均摊法是指每个图形平均拥有的粒子数目。

- ①顶点粒子为8个晶胞所有;
- ②棱上粒子为4个晶胞所有
- ③面上粒子为2个晶胞所有;
- ④晶胞内部完全属于该晶胞。

【综合练习】

一、选择题:			
1、关于化学键的下	列叙述正确的是		()
A. 离子化合物	中只含离子键	B. 共价化合	物中不含离子键
C. 离子化合物	中不可能含共价键	D. 共价化合	物中可能含离子键
2、下列含有非极性	键的共价化合物是		()
A. HCl	B. Na ₂ O ₂	$C. C_2H_6$	D. CH ₄
3、下列各组化学式	能真实表示物质分子	组成的是	()
A. NO, C ₂ H ₅ O	OH, HNO ₃ , I ₂	B. CaO, N ₂ , H ₂ SO	4, H ₂ O
C. NH_3 , H_2S ,	SiO ₂ , CO ₂	D. P ₄ , SO ₂ , CH ₃ CO	оон, с
4、下列物质既有离	子键又有极性共价键	學的是	()

	A. H_2O	$B.CaCl_2$	$C.Na_2O_2$	D.NaOH		
5、	下列各组中,能	形成离子化合物的是	:	()	
	A、K和Cl	B、H和F	C、P和O	D、S和O		
6,	下列化合物中含	有共价键,但属于离	子化合物的是			
	A. CaO	B. CO ₂	C. Na	OH D. H ₂ So	O_4	
7、	下列关于离子化	合物的叙述中,正确	的是	()	
	A. 离子化合物	物中都含有离子键	B. 离子化合物中	中的阳离子只能是金	属离子	
	C. 离子化合物	物一定能溶于水]	D. 溶于水可以导	电的化合物一定是离	哥子化合物	IJ
8,	下列各组物质中	,化学键类型完全相	同的是	()	
	A. SO ₂ 和 Na ₂ 0	O ₂ B. CO ₂ 和 H ₂	O C. NaCl 利	HCl D. CCl	4和 KCl	
9、	下列事实能说明(CS ₂ 是共价化合物的是	Ē		()
	A. CS ₂ 难溶于	水 B. 液态 C	CS ₂ 不导电			
	C. CS ₂ 密度小	D. CS ₂ 不	易分解			
10	、下列物质中,含	硫离子的是			()
	A. 硫化氢	B. 二硫化碳	C. 硫化铵	D. 硫酸钡		
11	、下列化学式中,	能真实表示物质的分	子组成的是		()
	A. NaOH	B. NaCl	C. KMnO ₄	D. Ar		
12	、化学反应的实质	5是:				
	A、分子的重新	f组合 B、旧作	化学键断裂和新化	学键形成		
	C、原子间形成	大大价键 D、原一	子间形成离子键			
13	、下列各组物质中	中,全部以共价键结合	的是		()
	A. H_2S , NH_3 ,	CO ₂ B. MgB	Br ₂ 、CaO、HCl			
	C. Na ₂ S, Mg	gO , HF D. CO_2 ,	$H_2O_N Na_2O_2$			
14	、下列物质的分子	中,共用电子对数目	最多的是		()
	A. N_2	B. NH ₃	C. CO ₂	D. H ₂ O		
15	、下列各对物质,	化学键完全相同的是	<u>.</u> £		()

	①NaCl 和 NaOH ②Cl ₂ 和 O ₂ ③Na ₂ S 和(NH ₄) ₂	S ④Na ₂ O ₂ 和CO ₂						
	A. 1)23 B. 24 C. 2	D. ①3						
16、	、某固体加热时,能生成气体并生成一种新的离子	化合物的是 ()						
	A. H ₂ SO ₄ B. KClO ₃ C. NaOH	D. NaCl						
17、	、下列性质中,可以证明某化合物内一定存在离子钱	建的是 ())					
	A. 可溶于水 B. 具有较高的熔点 C. 水泽	容液能导电 D. 熔融状态能导电						
18、	、下列化合物中离子核间距最大的是	())					
	A. NaCl B. LiCl C. KCl	D. NaF						
19、	、下列关于化学键的叙述正确的是	())					
	A.化学键既存在于相邻原子之间,又存在于相邻	分子之间						
	B.两个原子之间的相互作用叫做化学键							
	C.化学键通常指的是相邻的两个或多个原子之间的强烈相互作用							
	D.阴阳离子之间有强烈的吸引作用而没有排斥作	用,所以离子键的核间距相当小						
20,	、共价健、离子键、分子间作用力都是微粒间的作	用力,含有两种的是()						
	A. SiO ₂ B. H ₂ O C. NaCl	D. 金刚石						
21、	、晶体的下列说法中正确的是	()						
21,	A. 晶体中分子间作用力越大,分子越稳定 B.	原子晶体中共价键越强,熔点越高						
	C. 冰熔化时水分子中共价键发生断裂 D							
225	、在常温常压下呈气态的化合物,降温使其固化得							
22,	A. 分子晶体 B. 原子晶体 C. 离子晶体 D. 何种晶体无法判断							
23、	、下列过程中,共价键被破坏的是	()						
	A. 碘升华 B. 溴蒸气被木炭吸	附						
	C. 酒精溶于水 D. 氯化氢气体溶于	水						
24、	、全部由分子组成的一组物质是	()						
	A. CO ₂ , H ₂ O, NaOH B. CO, H ₂	2S、H ₂ SO ₄						
	C. NO ₂ , CH ₄ , NaCl D. SO ₂ , N	TH ₃ 、CaCl ₂						

二、综合分析题:

25、根据要求回答下列问题:										
(1) 只含有离子键的是(用序号回答)										
(2) 含有共价键的离子化合物是(用序号回答)										
(3) 含有共价键的共价化合物是(用序号回答)										
(4) 常温时为固体,当其熔化时,不破坏化学键的是(用序号回答)										
26、参考下表中化学键的键能数据,判断下列分子受热时最稳定的是:										
	A、氢气	B、氟化	氢 C、	氯化氢 D	、溴化氢	E、碘化氢				
	化学键	Н-Н	H-F	H-Cl	H-Br	H-I				
	键能	436	565	431	368	297				
	$(\mathbf{KJ}{\cdot}\mathbf{mol}^{-1})$									
27、写出下列物质的电子式,在括号内指出所含化学键的类型。										
(1) CO ₂ : ();										
(2) NaOH: ();										
(3) 四核 10 电子的共价分子:;										
(4) 四核 10 电子的阳离子: ()。										
28、X、Y 两元素能形成 XY2型化合物, XY2中共有 38个电子。										
(1) 若 XY ₂ 为离子化合物,其化学式:, 电子式:,										

(2) 若 XY₂是共价化合物, 其分子式: _____, 电子式: _____。